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Abstract

Biclustering is a powerful data mining technique that allows simultaneously clustering
rows (observations) and columns (features) in a matrix-format data set, which can provide re-
sults in a checkerboard-like pattern for visualization and exploratory analysis in a wide array
of domains. Multiple biclustering algorithms have been developed in the past two decades,
among which the convex biclustering can guarantee a global optimum by formulating in as
a convex optimization problem. On the other hand, the application of biclustering has not
progressed in parallel with the algorithm techniques. For example, biclustering for increas-
ingly popular microbiome research data is under-applied possibly due to its compositional
constraints for each sample. In this manuscript, we propose a new convex biclustering algo-
rithm, called the bi-ADMM, under general setups based on the ADMM algorithm, which is
free of extra smoothing steps to visualize informative biclusters required by existing convex
biclustering algorithms. Furthermore, we tailor it to the algorithm named biC-ADMM specif-
ically to tackle compositional constraints confronted in microbiome data. The key step of our
methods utilizes the Sylvester Equation to derive the ADMM algorithm, which is new to the
clustering research. The effectiveness of the proposed methods is examined through a variety
of numerical experiments and a microbiome data application.

Key words: Compositional data; Convex biclustering; Fused lasso; Microbiome data; Sylvester
Equation

1 Introduction

Biclustering is a powerful data mining technique that allows simultaneously clustering rows (ob-

servations) and columns (features) in a matrix-format data set. It is a 2-way extension of clustering
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analysis which aims to assign observations into a number of clusters such that observations in

the same group are similar to each other. Biclustering can provide results in a checkerboard-like

pattern, which can be used for visualization and exploratory analysis in a wide array of domains.

For example, Cheng and Church (2000) introduced the concept of biclustering for the first time to

gene expression data, aiming to overcome some problems of traditional clustering methods such as

information loss during oversimplied similarity and grouping computation. Instead, biclustering

identified genes expression patterns under a subset of all the conditions/samples, which provided a

better representation for genes with multiple functions or regulated by many factors. Furthermore,

in the big data era, electronic health records contain abundant information that can be transformed

into disease phenotypes. These phenotype data can be organized into a matrix, with individuals

as rows and phenotype features as columns, from which biclustering can discover a subgroup of

patients from a subset of phenotypes (Hripcsak and Albers, 2012). Results from biclustering can

shed lights on the downstream analyses to interpret the identified biclusters and to demonstrate

bicluster associations coupled with other statistical evaluations tool.

In the past two decades, multiple biclustering algorithms have been developed. The most pop-

ular approach for genomic data is the clustered dendrogram (Busygin et al., 2008; Madeira and

Oliveira, 2004), which actually performs the hierarchical clustering (Friedman et al., 2001) on

both subjects and genes. However, dendrogram is less ideal for generating reproducible results

because it greedily fuses observations or features to minimize a specific objective function such as

the within-clustering variance. As a consequence, this algorithm may return a locally optimal so-

lution with respect to the criterion, and dendrogram is not stable to small perturbations of the data

due to its greedy algorithm. Later on, more advanced biclustering methods have been proposed,

which are either based on the singular value decomposition (SVD) or graph cuts. However, Chi

et al. (2017) pointed out that none of these methods addressed the fundamental issues that under-

lay the clustered dendrogram. Alternatively, they formulated the biclustering problem as a convex

optimization problem, and solved it with an iterative algorithm based on the splitting methods for

convex clustering.
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Existing biclustering methods have several ways to define biclusters: 1) defining a submatrix

with a large average as a bicluster (Shabalin et al., 2009); 2) defining a bicluster by coherent low-

rank patterns (Lee et al., 2010; Li, 2020); 3) assuming the elements of a bicluster which shares

the same underlying mean (Chi et al., 2017; Flynn and Perry, 2012; Tan and Witten, 2014). To be

specific, this manuscript adopts the third way as it is motivated by Chi et al. (2017); Wang et al.

(2018).

On the other hand, application of biclustering has not progressed in parallel with the algorith-

mic development. Recently, Xie et al. (2018) provided a comprehensive review of biclustering

applications in biological and biomedical data, and pointed out there is a need for developing

supporting computational techniques and providing the guidance on selecting the appropriate bi-

clustering tools in a specific study. Data generated from different biotechnologies have their own

properties. For example, 16S and shotgun sequencing are two widely used sequencing techniques

in microbiome studies. The raw microbiome data are typically organized into large matrices with

rows representing samples, and columns containing observed counts of clustered sequences com-

monly known as operational taxonomic units (OTUs). Because the observed counts are not com-

parable across samples due to their constrained total by the sequencing depth (Gloor et al., 2017),

normalizing counts toward their totals into the relative abundance is a commonly used metric in

microbiome studies, which imposes a compositional constraint for data from each sample. As

reviewed by Xie et al. (2018), there are limited applications of biclustering in microbiome stud-

ies, except one example. Falony et al. (2016) identified sample subsets with specific taxonomic

signatures using a biclustering approach called FABIA, proposed by Hochreiter et al. (2010).

In this manuscript, we propose a new convex biclustering algorithm, named bi-ADMM, un-

der general setups based on the alternating direction method of multipliers (ADMM) algorithm.

Furthermore, we tailor it to the algorithm, named biC-ADMM, specifically to tackle the com-

positional constraints confronted in microbiome data. As far as we have known, it is the first

biclustering algorithm that can handle data with compositional constraints. Compared with Chi

et al. (2017), the novelty of this paper is four-fold. First, we solve the convex biclustering problem
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via the ADMM algorithm directly. As Chi et al. (2017) mentioned, although an ADMM algorithm

was feasible, they solved it in an alternative way as a convex bicluster ring algorithm (COBRA)

via iteratively using Dykstra-like proximal algorithm (DLPA) combined with the alternating min-

imization algorithm (AMA) introduced in Chi and Lange (2015) as the convex clustering solver.

In the meanwhile, their methods require extra smoothing steps to facilitate the visualization of

estimtaed biclusters, seeing Figure 1(b) in Chi et al. (2017). The key step of our methods utilizes

the Sylvester Equation for the first time to solve the challenging estimation problem involving

constraints on both rows and columns of a matrix. Second, the proposed algorithms can naturally

incorporate additional constraints for rows or columns. For example, the modified algorithms for

the microbiome data with compositional constraint for data rows are provided. Third, the proposed

algorithms use two tuning parameters to control the resulting numbers of row and column clusters

separately, which includes the single parameter setting used by Chi et al. (2017) to controls the bi-

clustering path as a special case. As a result, our methods offer users an opportunity to fix clusters

for one dimenstion and monitor the clustering path of the other one. Fourth, the fused-lasso penalty

terms in the proposed methods accommodate Lq-norm, q “ 1, 2,8, and thus, are more flexible

than the COBRA which requires the L2-norm. Note that our methods are not only theoretically

sound, but also practically promising. The superior performance of our methods is demonstrated

in extensive simulated examples and the application to analyze a murine gut microbiome dataset

(Livanos et al., 2016).

We demonstrate the superior performance of the proposed algorithm under the simulation set-

ting in Section 4.1 with σ “ 4, where σ is the standard deviation of the random noise for data

generation. To ensure a fair comparison, we adopt a special case of our methods using the objec-

tive function (10) with a single tuning parameter, which is also used by COBRA. In this setting,

there are n “ 80 samples from 4 clusters and p “ 40 features from 4 clusters. Figure 1 compares

the performance of COBRA without the smoothing step (indicated as COBRA on the left panel)

and our method (indicated as bi-ADMM on the right panel), by visualizing the estimate for each

method with the same set of weights and the same value for the single tuning parameter, γ “ 6.72.
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The heat maps show that the proposed bi-ADMM algorithm can directly visualize the estimate

with a clear checkerboard-like pattern without any further procedure.

Figure 1: The heat maps of estimated matrices based on the COBRA (left) and the bi-ADMM
(right) algorithms with the same tuning parameter γ “ 6.72, respectively. Rows indicate 80 sam-
ples with 4 clusters and columns indicate 40 features with 4 clusters. The row(column) side color
bars indicate the true row(column) clusters.

COBRA bi−ADMM

The rest of the paper is organized as follows. We propose the main methods and algorithms

in Section 2. Some practical consideraions for applying the proposed algorithms are discussed

in Section 3. The performance of the proposed methods via simulation studies are evaluated in

Section 4, and a microbiome application is presented in Section 5. We conclude the paper with a

brief summary in Section 6, and defer all technical proofs to the Appendix.

2 Convex Biclustering

In this section, we develop algorithms for a general biclustering problem first, and then extend

them to incorporate the compositional constraints, a unique feature of the microbiome data.
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2.1 Specification of the General Model

We consider a general biclustering problem as follows. Let X P Rnˆp be a data matrix with n

observations Xi¨ “ pXi1, . . . , Xipq
T with p features, i “ 1, ¨ ¨ ¨ , n. The underlying assumption

for applying a biclustering method is that the n observations belong to K unknown and non-

overlapping classes, C1, . . . , CK , and the p features belong to R unknown and non-overlapping

classes, D1, . . . , DR. Such checkerboard-like structure of a data matrix motivates researchers to

use the fused-lasso penalty (Tibshirani et al., 2005) to fuse rows and columns simultaneously.

To facilitate further derivations, we rewrite the data matrix X in feature-level as column vectors

xj so that X “ px1, ¨ ¨ ¨ ,xpq, where xj “ pX1j, ¨ ¨ ¨ , Xnjq
T, j “ 1, . . . , p. Similarly we denote A

in the feature-level consisting of column vectors A “ pa1, ¨ ¨ ¨ , apq, where aj “ pA1j, ¨ ¨ ¨ , Anjq
T,

and as pA1¨, . . . , An¨q
T in the observation-level. Define E1 “ tl “ pl1, l2q : 1 ď l1 ă l2 ď nu and

E2 “ tk “ pk1, k2q : 0 ď k1 ă k2 ď pu. Then denote |E1| and |E2| as the numbers of components

of E1 and E2, respectively.

We formulate the convex biclustering problem as the following minimization problem with

tuning parameters γ1 and γ2:

min
APRpˆn

1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 ` γ1

ÿ

lPE1

wl}Al1¨ ´ Al2¨}q ` γ2

ÿ

kPE2

uk}ak1 ´ ak2}q, (1)

where the weights wl ě 0 and uk ě 0, and } ¨ }q is the Lq-norm of a vector with q P t1, 2,8u. Chi

et al. (2017) and Wang et al. (2018) suggested wl “ ιm1
l1,l2

expp´φ}Xl1¨ ´ Xl2¨}
2
2q, where ιm1

l1,l2
is 1

if observation l2 is among l1’s m1 nearest neighbors or vice verse, and 0 otherwise. Similarly, we

suggest using uk “ ιm2
k1,k2

expp´φ}xk1 ´ xk2}
2
2q.

By incorporating the fused-lasso penalty in the second and third terms of (1), the above formu-

lation encourages that some of the rows or columns of the solution pA are identical. If pAl1¨ “ pAl2¨,

then observation l1 and observation l2 will be assigned to the same observation (row) cluster; if

pak1 “ pak2 , then feature k1 and feature k2 will be assigned to the same feature (column) cluster.

The tuning parameter γ1 in (1) controls the number of unique rows of pA, that is, the number of
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estimated observation clusters, while the tuning parameter γ2 controls the number of estimated

feature clusters. When γ1 “ γ2 “ 0, pA “ X, and thus, each combination of feature and observa-

tion by itself is a bicluster. As γ1 and γ2 increases, some of the rows and columns of pA become

identical, respectively, which demonstrates a fusing process. For sufficiently large γ1 and γ2, all

rows or columns of pA will be identical, implying that all observations or features are estimated to

form a single bicluster. With such a strictly convex objective function in (1), the solution pA from

convex biclustering is unique for each given pair of γ1 and γ2.

2.2 bi-ADMM: a Biclustering Algorithm for the General Model

In order to implement the ADMM algorithm, we rewrite the above problem into the following

constrained optimization problem:

min
APRpˆn

1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 ` γ1

ÿ

lPE1

wl}vl}q ` γ2

ÿ

kPE2

uk}zk}q (2)

s.t. Al1¨ ´ Al2¨ ´ vl “ 0, @l P E1

ak1 ´ ak2 ´ zk “ 0, @k P E2,

which is also equivalent to an augmented Lagrangian problem given by

Lν1,ν2pA,V,Z,Λ1,Λ2q “
1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 ` γ1

ÿ

lPE1

wl}vl}q ` γ2

ÿ

kPE2

uk}zk}q

`
ÿ

lPE1

xλ1l,vl ´ Al1¨ ` Al2¨y `
ν1

2

ÿ

lPE1

}vl ´ Al1¨ ` Al2¨}
2
2

`
ÿ

kPE2

xλ2k, zk ´ ak1 ` ak2y `
ν2

2

ÿ

kPE2

}zk ´ ak1 ` ak2}
2
2, (3)

where ν1 and ν2 are nonnegative constants, V “ pv1, . . . ,v|E1|q, Z “ pz1, . . . , z|E2|q, Λ1 “

pλ11, . . . ,λ1|E1|q and Λ2 “ pλ21, . . . ,λ2|E2|q. This optimization problem is challenging in dealing

with fusing both observation-level and feature-level vectors in the objective function simultane-

ously.

7



Jun 9, 2021

The bi-ADMM minimizes the augmented Lagrangian problem by alternatively solving one

block of variables at a time. Specifically, bi-ADMM solves

Am`1
“ argmin

A
Lν1,ν2pA,Vm,Zm,Λm

1 ,Λ
m
2 q,

Vm`1
“ argmin

V
Lν1,ν2pAm`1,V,Zm,Λm

1 ,Λ
m
2 q,

Zm`1
“ argmin

Z
Lν1,ν2pAm`1,Vm`1,Z,Λm

1 ,Λ
m
2 q, (4)

λm`1
1l “ λm1l ` ν1pv

m`1
l ´ Am`1

l1¨
` Am`1

l2¨
q, l P E1,

λm`1
2k “ λm2k ` ν2pz

m`1
k ´ am`1

k1
` am`1

k2
q, k P E2.

Next, we develop the detailed updating implementations for A,V,Z,Λ1 and Λ2 in three steps.

A summary of the bi-ADMM algorithm is shown in Algorithm 1.

Step 1: update A. To update A, we need to minimize

fpAq “
1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 `

ν1

2

ÿ

lPE1

}rvl ´ Al1¨ ` Al2¨}
2
2 `

ν2

2

ÿ

kPE2

}rzk ´ ak1 ` ak2}
2
2, (5)

where rv1 “ vl `
1
ν1
λ1l and rzk “ zk `

1
ν2
λ2k.

The optimization problem is challenging because it involves both rows and columns of a single

matrix. To tackle this difficulty, the following key lemma associating p5qwith a Sylvester Equations

is proposed. The proof of Lemma 1 is provided in Appendix.

Lemma 1 Let In be an nˆn identity matrix, 1n be an n-dimensional vector with each component

being 1, ei be an n-dimensional vector with all components being 0, except the i-th component

being 1, and e˚j is a p-dimensional vector with the j-th element as 1 and 0 otherwise. In addition,

define

M “ In ` ν1

ÿ

lPE1

pel1 ´ el2qpel1 ´ el2q
T

N “ ν2

ÿ

kPE2

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T

8
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G “ X`
ÿ

lPE1

pel1 ´ el2qpλ1l ` ν1vlq
T
`

ÿ

kPE2

pλ2k ` ν2zkqpe
˚
k1
´ e˚k2q

T.

Then, minimizing p5q is equivalent to solving the following Sylvester Equation

MA`AN “ G. (6)

If the edge sets E1 and E2 contain all possible edges, it is straightforward to verify

ÿ

lPE1

pel1 ´ el2qpel1 ´ el2q
T
“ nIn ´ 1n1

T
n

ÿ

kPE2

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T
“ pIp ´ 1p1

T
p .

Then, M “ p1` nν1qIn ´ ν11n1
T
n and N “ pν2Ip ´ ν21p1

T
p .

The type of equation (6) is called Sylvester Equation, which is very important in control theory

and many other branches of engineering. Its theoretical solution is based on eigenvector and eigen-

value decomposition (Jameson, 1968), but it is computationally expensive. The Bartels-Stewart al-

gorithm (Bartels and Stewart, 1972) is the standard numerical solution that transforms the Sylvester

Equation into a triangular system with the Schur decomposition and then solves it with forward

or backward substitutions. In this manuscript and its accompanied R package, we implement a

modified Bartels-Stewart algorithm proposed by Sorensen et al. (2003), which is more efficient.

Step 2: Update V and Z. For any σ ą 0 and norm Ωp¨q, we define a proximal map,

proxσΩpuq “ argmin
v

„

σΩpvq `
1

2
}u´ v}22



.

We refer the readers to Table 1 in Chi and Lange (2015) for the solutions to the proximal map of

Lq-norm for q “ 1, 2 and 8. It is clear that the vectors vl and zk are separable in the objective

function (3), and thus vl and zk can be solved via proximal maps:

vl “ argmin
vl

1

2
}vl ´ pAl1¨ ´ Al2¨ ´ ν

´1
1 λ1lq}

2
2 `

γ1wl
ν1

}vl}q

9
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“ proxσ1l}¨}qpAl1¨ ´ Al2¨ ´ ν
´1
1 λ1lq

zk “ argmin
zk

1

2
}zk ´ pak1 ´ ak2 ´ ν

´1
2 λ2kq}

2
2 `

γ2uk
ν2

}zk}q

“ proxσ2k}¨}qpak1 ´ ak2 ´ ν
´1
2 λ2kq,

where σ1l “ γ1wl{ν1 and σ2k “ γ2uk{ν2.

Step 3: Update Λ1 and Λ2. Finally, λ1l and λ2k can be updated by λ1l “ λ1l` ν1pvl´Al1¨`

Al2¨q and λ2k “ λ2k ` ν2pzk ´ ak1 ` ak2q.

Algorithm 1 bi-ADMM

1. Initialize V0,Z0,Λ0
1 and Λ0

2. Calculate

M “ In ` ν1

ÿ

lPE1

pel1 ´ el2qpel1 ´ el2q
T

N “ ν2

ÿ

kPE2

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T

For m “ 1, 2, . . .

2. Solve the Sylvester Equation MA`AN “ Gm´1 to obtain Am, where

Gm´1
“ X`

ÿ

lPE1

pel1 ´ el2qpλ
m´1
1l ` ν1v

m´1
l q

T
`

ÿ

kPE2

pλm´1
2k ` ν2z

m´1
k qpe˚k1 ´ e˚k2q

T.

3. For l P E1, do

vml “ proxσ1l}¨}qpA
m
l1¨
´ Aml2¨ ´ ν

´1
1 λm´1

1l q.

4. For k P E2, do

zml “ proxσ2k}¨}qpa
m
k1
´ amk2 ´ ν

´1
2 λm´1

2k q.

5. For l P E1 and k P E2, do

λm1l “ λm´1
1l ` ν1pv

m
l ´ A

m
l1¨
` Aml2¨q

λm2k “ λm´1
2k ` ν2pz

m
k ´ amk1 ` amk2q

6. Repeat Steps 2-5 until convergence.
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2.3 biC-ADMM: Biclustering Algorithm for Data with Compositional Con-

straints

For microbiome data, due to its data-generating mechanism, the counts of all taxa need to be

normalized into the relative abundances such that their summation for each sample is 1. This

type of data is also called compositional data in mathematics. Our newly proposed clustering

algorithm, biC-ADMM, aims to incorporate the compositional constraints into the optimization.

To be specific, the data from each sample satisfy XT
i¨ 1p “ 1, i “ 1, . . . , n, and then it is natural to

require the estimate A to satisfy the same constraints, i.e., AT
i¨1p “ 1.

Because the bi-ADMM solves an optimization problem with constraints, it can be easily ex-

tended to the biC-ADMM algorithm by incorporating the compositional constraints. With the ad-

ditional compositional constraints into (2), the augmented Lagrangian problem for compositional

data is given by

Lν1,ν2,ν3pA,V,Z,Λ1,Λ2,λ3q “
1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 ` γ1

ÿ

lPE1

wl}vl}q ` γ2

ÿ

kPE2

uk}zk}q

`
ÿ

lPE1

xλ1l,vl ´ Al1¨ ` Al2¨y `
ν1

2

ÿ

lPE1

}vl ´ Al1¨ ` Al2¨}
2
2

`
ÿ

kPE2

xλ2k, zk ´ ak1 ` ak2y `
ν2

2

ÿ

kPE2

}zk ´ ak1 ` ak2}
2
2

`xλ3,1n ´A1py `
ν3

2
}1n ´A1p}

2
2, (7)

where ν3 is a nonnegative constant and λ3 “ pλ31, . . . , λ3nq
T.

As a variant of the bi-ADMM for biclustering compositional data, the biC-ADMM algorithm is

similar with the bi-ADMM detailed in Section 2.2. The key step for updating A of the biC-ADMM

is summarized in the following Lemma 2, which minimizes:

fpaq “
1

2
}x´ a}22 `

ν1

2
}BPa´ rv}22 `

ν2

2
}Ca´ rz}22 `

ν3

2
}Da´ s}22, (8)
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with x “ vecpXq, a “ vecpAq, the vectorization of the matrices X and A, and

BT
“
`

BT
1 , . . . ,B

T
|E1|

˘

, rvT
“
`

rvT
1 , . . . , rv

T
|E1|

˘

,

CT
“
`

CT
1 , . . . ,C

T
|E2|

˘

, rzT
“
`

rzT
1 , . . . ,rz

T
|E2|

˘

,

DT
“
`

DT
1 , . . . ,D

T
n

˘

, s “ ps1, . . . , snq
T
“ 1n ` λ3{ν3,

where Bl “ pel1 ´ el2q
T b Ip,Ck “ pe

˚
k1
´ e˚k2q

T b In,Di “ 1T
p b eT

i , and P is a permutation

matrix such that vecpATq “ PvecpAq, l “ 1, . . . , |E1|, k “ 1, . . . , |E2|, i “ 1, . . . , n, respectively.

Lemma 2 Define

M “ In ` ν1

ÿ

lPE1

pel1 ´ el2qpel1 ´ el2q
T

N “ ν2

ÿ

kPE2

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T
` ν31p1

T
p

G “ X`
ÿ

lPE1

pel1 ´ el2qpλ1l ` ν1vlq
T
`

ÿ

kPE2

pλ2k ` ν2zkqpe
˚
k1
´ e˚k2q

T
` ν3s1

T
p .

Then, minimizing p8q is equivalent to solving the following Sylvester Equation

MA`AN “ G. (9)

Proof of Lemma 2 is provided in the Appendix, and the biC-ADMM algorithm is summarized

in Algorithm 2.

3 Implementation of bi-ADMM and biC-ADMM in Practical

Settings

In this section, we discuss a few practical issues for implementing the proposed algorithms, in-

cluding algorithmic convergence and selection of tuning parameters. The weights wl and uk are

suggested in Section 2.1.
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Algorithm 2 biC-ADMM

1. Initialize V0,Z0,Λ0
1,Λ

0
2 and λ0

3. Calculate

M “ In ` ν1
ÿ

lPE1

pel1 ´ el2 qpel1 ´ el2 q
T

N “ ν2
ÿ

kPE2

pe˚k1 ´ e˚k2 qpe
˚
k1
´ e˚k2 q

T ` ν31p1
T
p

For m “ 1, 2, . . .

2. Solve the Sylvester Equation MA`AN “ Gm´1 to obtain Am, where

Gm´1 “ X`
ÿ

lPE1

pel1 ´ el2 qpλ
m´1
1l ` ν1vm´1

l qT `
ÿ

kPE2

pλm´1
2k ` ν2zm´1

k qpe˚k1 ´ e˚k2 q
T ` ν3sm´11T

p ,

where sm´1 “ 1n ` λm´1
3 {ν3.

3. For l P E1, do

vml “ proxσ1l}¨}q pA
m
l1¨
´Aml2¨ ´ ν

´1
1 λm´1

1l q.

4. For k P E2, do

zml “ proxσ2k}¨}q pa
m
k1
´ amk2 ´ ν

´1
2 λm´1

2k q.

5. For l P E1 and k P E2, do

λm1l “ λm´1
1l ` ν1pv

m
l ´A

m
l1¨
`Aml2¨q

λm2k “ λm´1
2k ` ν2pz

m
k ´ amk1 ` amk2 q

λm3 “ λm´1
3 ` ν3p1n ´Am1pq

6. Repeat Steps 2-5 until convergence.

3.1 Algorithmic Convergence

The proposed convex biclustering algorithms are derived by applying standard techniques of the

ADMM method. For convex clustering problems, Chi and Lange (2015) and Wang et al. (2018)

as well as the references therein provided sufficient conditions for the convergence of their pro-

posed methods. Chi et al. (2017) discussed the convergence of their algorithm COBRA for convex

biclustering problem.

The convergence of our bi-ADMM and biC-ADMM algorithms follows similar arguments.

Note that the only difference between the objective function in (1) and its counterpart in Chi

and Lange (2015) is an additional fused-lasso penalty term for feature-level vectors, which is

strongly convex. According to Chi and Lange (2015), one can show that, under mild regular-
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ization conditions, the convergence of the bi-ADMM and biC-ADMM algrithms is guaranteed for

any νj ą 0, j “ 1, 2, 3.

3.2 Selection of Tuning Parameters

This subsection discusses the methods for selecting tuning parameters γ1 and γ2. Recall that γ1

controls the number of estimated observation-level clusters and γ2 controls the number of estimated

feature-level clusters. The usage of two separate tuning parameters to control the numbers of row

and column clusters separately provide great flexibility in applications.

Generally speaking, a two-dimensional grid search can provide an optimal pair of tuning pa-

rameters under some criterion if the computational resource is sufficient. Sometimes, if the data

matrix is in a large scale, we may adopt a similar strategy suggested in Chi et al. (2017) by using

a single tuning parameter γ for properly rescaled penalty terms. Using a single tuning parameter

can reduce the computational burden, but row and columns have to be clustered in a proportional

manner.

To be specific, we rewrite the convex biclustering problem as the following minimization prob-

lem with a single tuning parameter γ:

min
APRpˆn

1

2

n
ÿ

i“1

}Xi¨ ´ Ai¨}
2
2 ` γ

#

ÿ

lPE1

wl}Al1¨ ´ Al2¨}q `
ÿ

kPE2

uk}ak1 ´ ak2}q

+

. (10)

The key to the validity of this formulation is that the two penalty terms
ř

lPE1 wl}Al1¨ ´ Al2¨}q and
ř

kPE2 uk}ak1 ´ ak2}q should be on the same scale. Note that row vectors of A are in Rp while

column vectors of A are in Rn. Thus, we choose row weights wl to sum to 1{
?
p and the column

weights uk to sum to 1{
?
n.

Next, we discuss two criteria for tuning parameter selection in a data-driven manner. One is

spiritually similar with cross-validation and the other is based on stability selection. Chi et al.

(2017) proposed a hold-out validation method for convex biclustering by randomly selecting a

hold-out of elements in the data matrix and assessing the quality of predicting the hold-out set with
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an estimated model based on the rest elements. Alternatively, Wang et al. (2018) proposed to use

stability selection in Fang and Wang (2012) to tune two parameters for sparse convex clustering.

For convex biclustering, we can apply stability section in a similar way to tune γ1 and γ2. To

be specific, for any given γ1 and γ2, two biclustering results can be produced via (1) based on

two sets of bootstrapped samples, and then the stability measurement (Fang and Wang, 2012) can

be computed to measure the agreement between the two biclustering results. A repetition of this

procedure for 50 times is required to enhance the robustness of the stability selection method.

Finally, the optimal parameters are selected as the one achieving maximum averaged stability

value.

4 Simulation Studies

In this section, we conduct simulation studies to thoroughly evaluate the performance of the pro-

posed bi-ADMM under general biclustering setups using L2- and L1-norms, and the biC-ADMM

using L2-norm under scenarios with compositional constrains motivated by a real microbiome

dataset Livanos et al. (2016), and compare them with the competing method COBRA. We do not

illustrate the proposed algorithms with L8-norm because extra computation burden is needed to

solve the proximal map with simplex algorithms in Step 2 of Algorithms 1 and 2. For each setting,

we run 100 repetitions. In all simulation studies, the adjusted RAND index (ARI) (Hubert and

Arabie, 1985) is used to measure the agreement between the estimated clustering result and the

underlying true clustering assignment. The ARI ranges from 0 to 1 with a higher value indicating

better performance. Note that the underlying cluster labels are known or pre-specified in simula-

tion studies, and thus, it is feasible to evaluate how well the candidate methods can perform if they

are tuned by maximizing the ARI.

To ensure fair comparisons with the COBRA, we adopt the formulation shown in (10), us-

ing a single tuning parameter. For each repetition, an optimal tuning parameter γ is chosen by

maximizing the ARI on a separate validation data set for candidate algorithms.
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4.1 General Setups

To generate datasets with checkerboard cluster structures, we consider various sizes of datasets

with n observations (row) and p features (column), where pn, pq are set as p50, 40q, p100, 80q, p200, 160q,

respectively. The number of row and column clusters varies as well. Given the dataset size,

K “ 4, 8, 12, or 16 row clusters and R “ 4, 8, or 16 column clusters are generated accordingly.

The corresponding total number of biclusters are M .
“ K ˆR “ 16, 32, 64, 96, 128, or 256.

Xij is generated as follows. First, we assign cluster indexes to the observations (rows) by sam-

pling from a set t1, ..., Ku uniformly, and the cluster indexes are assigned to features (columns)

following a similar procedure. Thus, each Xij belongs to one of those M biclusters. Second, ran-

dom samples for each bicluster are generated from a normal distribution, Xij i.i.d. „ N pµkr, σ2q,

i.e., samples from the row cluster k P t1, . . . , Ku and column cluster r P t1, . . . , Ru follow a

normal distribution with mean µkr and variance σ2. µkr is chosen uniformly from a sequence

t´10,´9, . . . , 9, 10u. We vary the variance σ2 to change the noise level, and the σ is chosen as

2, 4, 6, 8, and 10 in our simulation settings, respectively. Both parameters ν1, ν2 for the bi-ADMM

algorithm are set as 8.

We compare the performance of bi-ADMM with L2-norm (bi-ADMM (L2)), bi-ADMM with

L1-norm (bi-ADMM (L1)), and COBRA on identifying the bicluster structures in terms of the ARI.

The mean value and the standard deviation of the ARI for each setting and algorithm across 100

replications are presented in Table 1. The largest mean ARI value for each setting is bolded, and all

tied values are bolded as well. Overall, we can see that as σ increases, the ARIs for all three meth-

ods decrease. These observations are reasonable because a larger σ implies a more challenging task

to identify correct bicluster structures due to a higher noise level. In the meanwhile, given σ and

M , a larger sample size implies better performance. As to the differences between three methods,

it is clear that bi-ADMM (L2) outperform the others in most cases, while bi-ADMM (L1) leads in

a few cases with narrow margins. COBRA works comparably well in low-noise scenarios, but its

performance deteriorates more quickly than bi-ADMM counterparts as the noise level increases,

even worse than bi-ADMM (L1) in some high-noise scenarios. The above results indicate that the
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proposed bi-ADMM methods are more robust convex biclustering algorithms. It is not surprising

to see that bi-ADMM (L1) is inferior to the other two methods in most cases, because the spherical

clusters are generated under multivariate Gausiian distributions, which use L2-norm internally.

4.2 Compositional Data

In this section, we evaluate the biclustering performance of biC-ADMM with L2-norm and CO-

BRA algorithms using simulated compositional data based on a murine gut microbiome study

(Livanos et al., 2016), which compared the gut microbiome between the group with early-life

pulsed therapeutic antibiotic dosing (PAT) treatment and the group without any antibiotic treat-

ment (control). In accordance with prior microbiome data analysis (Hu et al., 2018; Koh et al.,

2017), we first generate OTU counts for 100 subjects from the Dirichlet-multinomial (DM) dis-

tribution, where the dispersion parameter and proportion means were estimated from the control

microbiome samples of the murine study, and the total number of reads per sample is set to 10,000.

As a demonstration, a subset of the OTU count data consisting of 36 mice and 24 common taxa

with average proportation ą 0.01 at age of 6 weeks is used in estimating the parameters of the

DM distribution. Here the rule ą 0.01 helps to remove the extremely rare taxa and to facilitate

the following manipulation. Before we manually manipulate one half of the generated samples to

create biclusters, using the original data we sort the average proportions of taxa in an ascending

order and assign them into 3 groups: Group 1 has the first six taxa with the smallest proportions,

accounting for 3% overall relative abundance on average; Group 2 has the last five taxa, accounting

for 87% overall relative abundance on average; Group 3 has the remaining 13 taxa, accounting for

10% overall relative abundance on average. We manipulate the data in the following way. First,

for each generated sample using the fitted DM model, we calculate the ratio of the summed counts

for Group 2 over the summed counted for Group 1 (the averaged ratio is 126), and reduce the ratio

by 1,400 folds. By doing that, we increased the relative abundance for taxa in Group 1 by roughly

93 folds from the original data. Second, we calculate the re-scaled counts for Groups 1 and 2 using

the adjusted ratio by fixing the original total counts for Groups 1 and 2. Third, the count for each
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taxa in Groups 1 and 2 is re-scaled according to the ratio of the re-scaled group counts over the

original ones. Lastly, the relative abundance for this sample is obtained by standardizing it using

the total counts. By doing these, the relative abundance of the taxa in Group 3 remains unchanged,

denoted as “unchanged”. Group 1 has its relative abundance enlarged for its taxa, while Group 2

has reduced relative abundance. Thus, Group 1 is denoted as “enlarged”, and Group 2 is denoted as

“shrunk”. The 50 untouched samples are denoted as the “control” group, and the 50 manipulated

samples are denoted as the “treatment” group. Then, the resulting data set has two row clusters

and three column clusters.

Next, we evaluate the performance of COBRA and biC-ADMM algorithms on identifying the

bicluster structure in terms of the ARI. The biculster structure with two row clusters and three

column clusters may be artificial, so the ARI only serves as a reference metric. Under the com-

positional setting, a single tuning parameter γ for the COBRA is tuned, using the default setting

provided by the R package “cvxbiclustr”, and we adopt a two-dimensional grid search on γ1 and

γ2 for the biC-ADMM method to allow for more flexibility.

Table 2 shows that the biC-ADMM is superior to the COBRA algorithm in terms of the ARI.

For one simulated data set, the best tuning parameters are γ1 “ 37.28 and γ2 “ 268.27. Figure 2

presents the corresponding heat map based on the estimated pA. We can see that the biC-ADMM

algorithm correctly identifies the “treatment” and “control” groups for samples. For column clus-

ters, the taxa from the same groups are almost classified in the same algorithm-generated clusters.

The five taxa in the group “shrunk” are included in two generated clusters with sizes as 1 and 4.

The six taxa in the “enlarged” group are split into two clusters also, with one mixed into a cluster

primarily formed by taxa from the “unchanged” group. Only one taxon from the “unchanged”

group is merged with taxa from the “shrunk” group.

4.3 Computational Consideration

Although both the proposed Algorithm 1 and COBRA can target the same convex objective func-

tion (10), as we can see from Figure 1, the resulting estimates vary slightly. The dendrogram or an
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Figure 2: Left panel: the heat map of the original simulated compositional data with 100 samples
in 2 row clusters and 24 taxa in 3 column clusters. Right panel: the heat maps of pA estimated
by the biC-ADMM algorithm. The row(column) side color bars indicate the “true” row(column)
clusters.
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extra smoothing step can facilitate COBRA to convey the bicluster pattern, while our method can

clearly display the pattern. One possible reason is that we directly derive the ADMM algorithm,

and COBRA adopts an alternative approximation algorithm.

Step 2 in both Algorithms 1 and 2 involves solving the Sylvester Equation, which imposes extra

computational burden compared with the COBRA based on the DLPA and the AMA based convex

clustering solver, which has less computational burden compared with the ADMM based solver

(Chi and Lange, 2015; Wang et al., 2018). As we implement the up-to-date algorithm to solve such

type of equation, it is interesting to compare the computational time of the proposed methods to the

COBRA on various data settings. In the following, we evaluate the computational time in seconds

of the COBRA and the bi-ADMM algorithm under theL2-norm. The COBRA is implemented with

the R package “cvxbiclustr” (Chi et al., 2017). We have developed an R package “biADMM” to
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implement our convex biclustering algorithms, bi-ADMM and biC-ADMM. We also developed a

solver for the Sylvester Equation, which is based on a modified Bartels-Stewart algorithm proposed

by Sorensen et al. (2003). To improve the efficiency of the bi-ADMM algorithm, we also develop

a Python version, which can be called back in R.

The data sets are generated with the simulation settings described in Section 4.1. We set σ “ 2

with a given tuning parameter γ “ 0.1 defined in (10). Thirty replicates are simulated, and each

algorithm is run for 10 iterations. Table 3 compares the average running time across 30 replicates

of COBRA, bi-ADMM and Python-version bi-ADMM under various combinations of n, p,K and

R. The COBRA shows its superiority in program efficiency, with the shortest running time and the

slowest increase as the scenario gets more complicated. The Python-version bi-ADMM program

improves the running time significantly compared with the R version. It is reasonable to pay

acceptably more running time for better biclustering performance. The computer is equipped with

a CPU i5-7267 (3.10 GHz) and 8G memory.

5 Application of biC-ADMM to a Gut Microbiome Data

Here, we apply the proposed biC-ADMM algorithm with two tuning parameters to the murine

microbiome dataset used in simulation studies to assess the biclustering performance in composi-

tional data. To be specific, we aim to simultaneously cluster a subset at 13 weeks with 37 common

taxa and 68 samples, consisting of 32 microbiome samples from the PAT group and 36 control sam-

ples without retrieving their true treatment group information. The left panel of Figure 3 shows

the heat map and dendrogram of this data set. Since microbes in a community are usually depen-

dent upon one another and may react similarly with environmental changes, it is of great interest

to investigate whether there are multiple microbial taxa with the relative abundance being altered

concordantly with the antibiotic treatment. In addition, the relative abundances of microbiome

data are highly skewed, with a few common taxa accounting for the majority of bacteria in the

sample. Microbiome studies usually need to group taxa at a higher rank to pull the signal strength.
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Some other research found that microbial community can be divided into sub-communities based

on their functional reactions to the perturbation (Holmes et al., 2012; Sankaran and Holmes, 2019).

All these observations motivate the application of clustering algorithm to identify data-driven taxa

cluster patterns.

Following the commonly used pre-processing step in microbiome data analysis, the OTU count

data of each sample is normalized into relative abundances prior to conducting biclustering, i.e.,

with relative abundances of 37 taxa summing up to 1. In our biC-ADMM algorithm, we set m1 “

m2 “ 5 and φ “ 1 for weight wl and uk, and set ν1 “ ν2 “ ν3 “ 1.

Figure 3: Left panel: the heat map of the original microbiome data with 68 samples and 37 taxa.
Right panel: the estimate pA based on the biC-ADMM algorithm. The row(column) side color bars
indicate the row(column) clusters based on the algorithms.
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Then we apply the biC-ADMM algorithm to conduct convex biclustering for this data, which is

an unsupervised learning method, free of a priori grouping knowledge. Although the true sample

cluster labels are known, we mask them in biclustering analysis and aim to identify taxa clusters
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associated with potential sample subgroups. The tuning parameters are selected to maximize the

stability for taxa clusters based on stability selection in Section 3.2. The resulting optimal tuning

parameters are γ1 “ 153.99 and γ2 “ 82.54. The bic-ADMM algorithm results into eight taxa

clusters and seven sample clusters. It is noted that more sample clusters are obtained using biC-

ADMM with an ARI of 0.40, but from Table 4 we can see the purity of biC-ADMM generated

clusters is high with only five samples are misclassified. The resulting taxa clusters indicate those

taxa subgroups which have the potential to discriminate sample subgroups.

Figure 4: Snap shots of the biC-ADMM solution path of the microbiome data, as γ1 increases by
row and γ2 increase by column.
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Control
Control
Control
Control
Control
Control
Control
Control
Control
Control

γ1=562.34, γ2=177.83

Next, we illustrate how the solution pA evolves as γ1 and γ2 vary. Figure 4 shows snap shots

of the biC-ADMM solution path of this data set, as the parameter γ1 increases by row and γ2 in-
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creases by column. The row path captures the whole range of behavior between under-smoothed

estimates of the mean structure for taxa clusters (small γ2) to over-smoothed estimates (large γ2)

with fixed sample clusters, while the row column captures the whole range of behavior between

under-smoothed estimates for sample clusters (small γ1) to over-smoothed estimates (large γ1)

with fixed taxa clusters. In between the extremes in top-left and bottom-right panels, rows and

columns are fusing together as γ1 and γ2 increases. The entire solution path enable us to iden-

tify those specific taxa that could discriminate sample groups. “Akkermansia”, “Lactobacillus”,

“Rikenellaceae—Other”, “Blautia” and “S24-7—Other” seem to play an important role, and “S24-

7—Other” accounts for the largest relative abundance.

6 Summary

Biclustering is a powerful data mining technique which can provide results in a checkerboard-like

pattern to explore the feature patterns for subgroups, while it is under-utilized in biological and

biomedical data. Among biclustering algorithms developed in the past two decades, the convex

biclustering algorithm is appealing due to its globally optimal solution. However, existing convex

biclustering solved the convex optimization problem via an approximation to objective function

of the ADMM algorithm, which required extra smoothing steps to obtain informative biclusters.

On the other hand, existing biclustering methods cannot incorporate the compositional constraints

which are often needed for the increasingly popular microbiome data.

In this manuscript, a new algorithm for the standard convex biclustering and its extension under

the compositional constraints are proposed to simultaneously cluster observations and features,

denoted as the bi-ADMM and the biC-ADMM, respectively. Both algorithms directly apply the

ADMM method with solving a Sylvester Equation as a key step, which has a great potential to

solve other problems with both row and columns constraints for a data matrix. The numerical

results show that bi-ADMM and biC-ADMM are able to provide clear checkerboard-like pattern

directly without any further smoothing step. Furthermore, the biC-ADMM can solve biclustering
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problems with compositional constraints, and it can be extended to any linear constraint easily,

which has a great potential to be used in microbiome studies. Furthermore, we have developed

an R package “biADMM” to implement our convex biclustering algorithms, bi-ADMM and biC-

ADMM, which includes Python-version functions to speed up the calculation.

Moreover, this work can motivate future research. Wang et al. (2018) presented the Sparse Con-

vex Clustering problem, seeking to cluster observations and select features simultaneously. Feature

selection can be incorporated into the convex biclustering as well. In addition, Zhou et al. (2020)

developed a very efficient smoothing proximal gradient algorithm (Sproga) for convex clustering.

Then, we can extend convex biclustering to sparse convex biclustering and develop a highly effi-

cient algorithms to solve it, in order to conduct biclustering and feature selection simultaneously.

Furthermore, weights wl and uk serves important roles in convex biclustering, but they suffer from

the variable selection problem (Chakraborty and Xu, 2020). The proposed algorithms can be im-

proved in this direction as well.
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Appendix

In Appendix, we provide proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1

Denote a “ vecpAq, a vectorization of the matrix A. According to the fact that Ai1¨ ´ Ai2¨ “

ATpei1 ´ ei2q, ak1 ´ ak2 “ Ape˚k1 ´ e˚k2q, and the property of the tensor product vecpRSTq “

rTT bRsvecpSq, solving the minimization of fpAq is equivalent to minimize

fpaq “
1

2
}x´ a}22 `

ν1

2

ÿ

lPEl

}BlPa´ rvl}
2
2 `

ν2

2

ÿ

kPE2

}Cka´ rzk}
2
2,

where Bl,Ck and P are defined in Section 2.3. Then it follows that

fpaq “
1

2
}x´ a}22 `

ν1

2
}BPa´ rv}22 `

ν2

2
}Ca´ rz}22,

where B,C, rv and rz are defined in Section 2.3 as well.
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Finally, the stationary equation can be obtained by

pInp ` ν1P
TBTBP` ν2C

TCqa “ x` ν1P
TBT

rv ` ν2C
T
rz.

This is a system of np linear equations. By applying the properties for Kronecker product such

as pSbTqT “ ST bTT and pQbRqpSbTq “ pQSq b pRTq, it follows

ν2C
TC “ ν2

ÿ

kPE2

“`

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T
˘‰

b In

“

«

ÿ

kPE2

ν2

`

pe˚k1 ´ e˚k2qpe
˚
k1
´ e˚k2q

T
˘

ff

b In

ν2C
T
rz “ ν2

ÿ

kPE2

rpe˚k1 ´ e˚k2q b Insrzk

“
ÿ

kPE2

`

ν2pe
˚
k1
´ e˚k2q b In

˘

rzk

ν3D
TD “ ν3

n
ÿ

i“1

DT
i Di “ ν3p1p1

T
p q b In

ν3D
Ts “ ν3

n
ÿ

i“1

p1p b eiqsi “ ν3

n
ÿ

i“1

sivecpei1T
p q.

In addition, by applying Proposition 1 in Wang et al. (2018) for the permutation matrix P, we

can prove

Inp ` ν1P
TBTBP “ Ip b

«

In ` ν1

ÿ

lPE1

pel1 ´ el2qpel1 ´ el2q
T

ff

ν1P
TBT

rv “
ÿ

lPE1

pIp b ν1pel1 ´ el2qq rvl.

Therefore, the system of equations is equivalent to

pIp bMqvecpAq ` pNb InqvecpAq “ vecpGq,

which is equivalent to MA`AN “ G. l
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Proof of Lemma 2

Proof of Lemma 1 needs to be modified to incorporate the extra constraints. The stationary

equations for minimizing (8) can be obtained by

pInp ` ν1P
TBTBP` ν2C

TC` ν3D
TDqa “ x` ν1P

TBT
rv ` ν2C

T
rz` ν3D

Ts.

With matrix techniques, it follows

ν3D
TD “ ν3

n
ÿ

i“1

DT
i Di “ ν3p1p1

T
p q b In

ν3D
Ts “ ν3

n
ÿ

i“1

p1p b eiqsi “ ν3

n
ÿ

i“1

sivecpei1T
p q.

Therefore, the system of equations is equivalent to

pIp bMqvecpAq ` pNb InqvecpAq “ vecpGq.

l
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Table 1: Simulation results for the bi-ADMM with L2-norm, bi-ADMM with L1-norm, and CO-
BRA algorithms in terms of the ARI under various scenarios, respectively. The largest ARI(s) is
bolded for each scenario.

bi-ADMM (L2) bi-ADMM (L1) COBRA

n p K R M σ mean sd mean sd mean sd

50 40 4 4 16 2 1.00 0.03 1.00 0.02 0.99 0.05
4 0.96 0.09 0.96 0.09 0.88 0.15
6 0.85 0.16 0.83 0.18 0.66 0.19
8 0.65 0.21 0.63 0.19 0.42 0.17

8 4 32 2 0.99 0.02 0.99 0.03 0.97 0.06
4 0.92 0.08 0.92 0.08 0.82 0.12
6 0.76 0.12 0.77 0.11 0.57 0.15
8 0.54 0.16 0.55 0.14 0.33 0.12

100 80 4 4 16 2 1.00 0.02 1.00 0.03 1.00 0.02
4 0.97 0.06 0.94 0.10 0.91 0.11
6 0.86 0.15 0.75 0.19 0.84 0.20
8 0.67 0.18 0.54 0.19 0.65 0.20

8 4 32 4 0.91 0.09 0.91 0.09 0.93 0.08
6 0.73 0.12 0.71 0.20 0.75 0.13
8 0.53 0.12 0.51 0.14 0.53 0.14

8 8 64 4 0.98 0.05 0.96 0.06 0.98 0.05
6 0.82 0.17 0.78 0.13 0.81 0.13
8 0.45 0.14 0.48 0.13 0.30 0.19

200 160 8 8 64 4 1.00 0.02 0.99 0.03 1.00 0.02
6 0.95 0.07 0.92 0.09 0.95 0.07
8 0.80 0.13 0.71 0.15 0.77 0.14

10 0.51 0.17 0.42 0.16 0.46 0.16
12 8 256 4 1.00 0.02 1.00 0.02 1.00 0.01

6 0.95 0.05 0.94 0.06 0.97 0.05
8 0.74 0.12 0.72 0.13 0.73 0.15

10 0.46 0.14 0.40 0.13 0.39 0.13
16 8 128 4 0.99 0.03 0.99 0.02 1.00 0.01

6 0.94 0.05 0.91 0.07 0.77 0.11
8 0.66 0.11 0.69 0.11 0.69 0.12

10 0.44 0.12 0.37 0.12 0.35 0.11
16 16 256 4 1.00 0.003 1.00 0.006 1.00 0.003

6 0.98 0.03 0.95 0.05 0.96 0.04
8 0.77 0.12 0.65 0.12 0.62 0.17

10 0.40 0.15 0.23 0.08 0.28 0.10
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Table 2: Simulations results for biC-ADMM and COBRA algorithms in terms of the ARI under
the compositional setup.

biC-ADMM COBRA

mean sd mean sd

0.54 0.10 0.48 0.09

Table 3: Running time comparison with various combinations of n, p,K,R under the setting de-
scribed in Section 4.1 with σ “ 2 and a given tuning parameter γ “ 0.1. The time is in seconds,
which is an average across 30 replicates with 10 iterations for each algorithm.

n “ 50
p “ 40
K “ 4
R “ 4

n “ 50
p “ 40
K “ 8
R “ 4

n “ 100
p “ 80
K “ 4
R “ 4

n “ 100
p “ 80
K “ 8
R “ 4

n “ 200
p “ 160
K “ 12
R “ 8

n “ 200
p “ 160
K “ 16
R “ 8

COBRA 0.001 0.001 0.008 0.014 0.046 0.038
bi-ADMM 0.791 0.788 7.786 7.765 104.208 104.386
bi-ADMM (Python) 0.072 0.075 0.657 0.617 6.247 6.336

Table 4: The frequency table between true sample groups and clusters obtained from the biC-
ADMM algorithm.

biC-ADMM clusters

1 2 3 4 5 6 7 8

Control 1 2 0 0 1 1 25 6
PAT 17 4 3 5 0 0 0 0
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