
Article

Properties and pitfalls of weighting
as an alternative to multilevel multiple
imputation in cluster randomized trials
with missing binary outcomes under
covariate-dependent missingness
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Abstract

The generalized estimating equation (GEE) approach can be used to analyze cluster randomized trial data to obtain

population-averaged intervention effects. However, most cluster randomized trials have some missing outcome data and

a GEE analysis of available data may be biased when outcome data are not missing completely at random. Although

multilevel multiple imputation for GEE (MMI-GEE) has been widely used, alternative approaches such as weighted GEE

are less common in practice. Using both simulations and a real data example, we evaluate the performance of inverse

probability weighted GEE vs. MMI-GEE for binary outcomes. Simulated data are generated assuming a covariate-

dependent missing data pattern across a range of missingness clustering (from none to high), where all covariates are

measured at baseline and are fully observed (i.e. a type of missing-at-random mechanism). Two types of weights are

estimated and used in the weighted GEE: (1) assuming no clustering of missingness (W-GEE) and (2) accounting for such

clustering (CW-GEE). Results show that, even in settings with high missingness clustering, CW-GEE can lead to more bias

and lower coverage than W-GEE, whereas W-GEE and MMI-GEE provide comparable results. W-GEE should be

considered a viable strategy to account for missing outcomes in cluster randomized trials.
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1 Introduction

Cluster randomized trials (CRTs), also referred to as group randomized trials or community randomized trials, are
commonly used to evaluate the effectiveness of interventions. CRTs are trials in which groups (i.e. clusters) of
individuals are randomized to arms of the trial and outcomes are measured on individuals within those groups. As
a consequence, all individuals in each cluster receive the same treatment allocation and the unit of randomization
is different to the unit of measurement. The CRT design is particularly appealing when an intervention is naturally
delivered at a community-level,1 when there are concerns of treatment inequity within a community,2 when
intervention delivery at the cluster-level is logistically easier to implement3 or, in the case of infectious diseases,
to avoid the problem of identifying the indirect effect of treatment (or herd immunity) related to exposure
interference or contamination.4 The CRT design has been adopted in diverse settings and disciplines.1,2

Guidelines on design and reporting of CRT can be found in the CONSORT statement.5
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1.1 Missing outcome data in CRT: Current status and methods

Mixed effects models and the generalized estimating equation (GEE) approach are the most common regression
modeling approaches used to analyze CRT data.6,7 In the current article, we focus on the GEE approach for two
reasons: (1) fewer distributional assumptions are required, and (2) it provides a marginal intervention effect, whose
population-averaged interpretation is preferred for making public health and policy decisions rather than the
conditional, cluster-specific intervention effect estimated using mixed effects models.8,9 Two recent systematic
reviews indicated that while most CRTs (72% of 132 and 93% of 86 CRT, respectively) had missing outcomes,
less than half reported that they accounted for the missing data mechanism in the primary outcome analysis.6,10

When data are missing completely at random (MCAR), it is well-known that the analysis of all available data is
unbiased.11 (See Section 1 of Supplementary Material for missing data definitions.) When data are missing at
random (MAR), for example when the mechanism is covariate-dependent missingess (CDM) with fully observed
baseline covariates, the MCAR assumption for GEE can be relaxed by using weighted GEE (W-GEE),12

imputation13,14 or a combination of both.15 Methodological descriptions of multiple imputation approaches for
a range of outcome analyses of CRT data are available for continuous outcomes16–19 and binary outcomes.20–24

A subset of these articles focused specifically on multiple imputation (MI) approaches for GEE analyses of CRTs,
all of which focused on binary outcomes.20–24 All concluded that the MI approach should reflect the multilevel
structure of the data in a CRT through the use of a multilevel MI approach (MMI-GEE). Moreover, all of these
articles considered the CDM setting with fully observed baseline covariates and all specifically considered no
clustering in the missing process, except for Caille et al.20 Furthermore, this literature fits in the broader literature
on imputation for missing outcomes for correlated data in which it is also well recognized that the multiple
imputation strategy should use a multilevel structure in order to reflect the multilevel data structure.25,26 For
the alternative approach of weighting to account for missing outcomes, although there are methodological
descriptions of general weighting approaches,11 of weighted GEE for longitudinal data,25,27–29 and methods for
general correlated data,25,30,31 we have found no articles that address weighted GEE specifically for clustered
outcome data that arise in a CRT. This gap in the literature could explain why few trials implemented this
approach in practice.6,10

1.2 Motivating data example

We will use the Health and Literacy Intervention (HALI) CRT of a school-based intervention as our
motivating example. The literacy intervention provided professional development (e.g. lesson plans),
training (e.g. workshops) and support (e.g. weekly text messages) for teachers. One of the goals of the
HALI CRT was to evaluate the impact of the literacy intervention on child educational outcomes.3 In brief,
101 primary schools in coastal Kenya were randomized to intervention (51 schools) or control (50 schools).
A cohort of 2539 children was recruited from the 101 schools (approximately 25/school) and literacy outcomes
were assessed at baseline, 9- and 24-month follow-up. Approximately 12% and 20% of children were missing
outcomes at each follow-up, respectively. Analyses of all available data using likelihood-based mixed effects
models indicated that the intervention was effective at improving child literacy outcomes.32 Missing data
sensitivity analyses in that framework indicated no evidence of bias due to missing outcome data.32 In the
current article, we focus on the nine-month outcomes and a data set with fully observed baseline covariates,
and turn our attention to a setting where the estimand of interest is a population-averaged (marginal) intervention
effect, estimated using GEE.

1.3 Objectives

In the context of GEE analysis of CRTs with binary outcomes, the overall goal of the current manuscript is to
compare the performance of weighted GEE to the more commonly used MMI-GEE approach in a CDM missing
data setting where the covariates are collected at baseline and all are fully observed. In this context, the CDM
mechanism is a special case of an MAR mechanism, and we note that if some covariate values were missing, it
would be a type of MNARmechanism. We use both real data analysis and simulation to demonstrate and evaluate
the properties of weighted GEE in contrast to MMI-GEE for the analysis of CDM missing outcomes. In an
additional novelty, we consider CDM mechanisms both with and without clustering and consider two forms of
weighted GEE: the first, the standard approach where clustering is not accounted for in generating the weights
(W-GEE) and the second where it is accounted for (CW-GEE). In Section 2, we will first provide a brief
description of GEE, MMI-GEE, W-GEE and CW-GEE. In Sections 3 and 4, we provide an in-depth analysis
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of our motivating HALI data set and a simulation study, respectively. Overall, the goal of the article is to provide
the reader with guidance on how to use weighted GEE to analyze CRTs with missing outcomes, to demonstrate
that it is a viable alternative to MMI-GEE, whilst also providing a description of drawbacks and pitfalls of the
approach.

2 Theory and methods

We consider the two-arm cohort CRT design (Ai¼ 1 for intervention, Ai¼ 0 for control) with a total of M
clusters, variable number of participants per cluster (ni), a single follow-up outcome measurement, Yij, for
the jth individual (j¼ 1, . . ., ni) in the ith cluster (i¼ 1,. . ., M), with Yi ¼ ðYi1, . . . ,YiniÞ

T, a column-vector of
the ni outcomes in the ith cluster. Moreover, as noted above, our goal is to estimate the unadjusted marginal
intervention effect because the population-averaged interpretation of this effect is useful for making public health
and policy decisions.8

2.1 GEE analysis of CRT data with no missing outcomes

The semi-parametric GEE approach33,34 estimates parameters of a generalized regression model (equation (1)) for
the mean function of interest li ¼ ð�i1, . . . ,�ini Þ

T with link function g expressed as

gð�ijÞ ¼ �0 þ �AAi ð1Þ

The (unadjusted) intervention effect (�A) is typically reported as a mean difference between arms for continuous
outcomes (using identity-link, g) and as a prevalence (or risk) ratio or prevalence (or incidence) odds ratio for
binary outcomes (using log or logit link for g, respectively). In the current article, we focus on the latter, namely
binary outcomes with the logit link for which the intervention effect is naturally quantified as an odds ratio.
Because of the well-known ‘‘non-collapsibility’’ property of the odds ratio, adjustment for a baseline covariate that
is balanced between arms (i.e. which does not act as a confounding variable) will lead to a different estimated
intervention effect than that estimated from Model (1).35

To accommodate correlated responses, the standard, unweighted GEE approach estimates the intervention
effect defined in (1) by solving the following system of equations

0 ¼
XM

i¼ 1

DT
i V
�1
i Yi � li

� �
ð2Þ

where Di ¼ dli=db
T is the derivative of the marginal mean and Vi is a working covariance matrix for Yi. More

specifically, Vi ¼ A1=2
i RiA

1=2
i , where Ai, a function of the marginal mean �ij, is a diagonal matrix with elements

�vð�ijÞ, with � the dispersion parameter and v the variance function, and where Ri ¼Rið�Þ is a working correlation
structure defined by the user to model correlation of outcomes on individuals within the same cluster, where � is a
common correlation parameter across clusters. For CRT data, it is common to specify Vi as the identity or
compound symmetric matrix, corresponding to independence or exchangeability of individuals within a cluster,
respectively. The assumption of exchangeability is usually preferred over the independence structure, given that
outcomes on individuals in the same cluster are expected to be correlated.1 When there are no missing CRT
outcomes, there are two key benefits of the unweighted GEE approach (equation (2)) used to estimate the
intervention effect (equation (1)): consistency (i.e. the intervention effect estimate is asymptotically unbiased),
and, robustness to misspecification of the working correlation structure (i.e. the intervention effect estimate is
unbiased even if the working correlation matrix is different from the true correlation structure).34 Precision is
typically estimated using the sandwich variance estimator (see equation (4)36), to obtain the so-called ‘‘robust’’
standard errors (SE), given by

XM

i¼1

:̂ DT
i V
�1
i rir

T
i V
�1
i Di

� �
:̂ ð3Þ

where :̂ ¼
�PM

i¼1 D
T
i V
�1
i Di

��1
is the model-based variance and ri ¼ Yi � l̂i is the residual vector for cluster i.

Efficiency (i.e. smallest SE) is achieved when the true correlation structure of the outcome data is correctly
specified.36
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2.2 Complete records GEE analysis of CRT data with missing outcomes

The simplest approach to the analysis of CRT data with missing outcomes is to analyze only available
data using the GEE analysis model (2). This approach is commonly referred to as a complete records
analysis (CRA) when there is a single follow-up time point, the setting considered in the current article, and,
as such, we refer to CRA-GEE. The CRA-GEE approach to estimate a population-averaged intervention
effect is valid under MCAR mechanisms and will lead to an unbiased intervention effect. In contrast,
when baseline covariates are predictive of both the probability of a missing outcome and of the outcome
level itself, it is natural to consider additional adjustment for those covariates in an adjusted CRA-GEE
(A-CRA-GEE) mirroring the use of such covariate adjustment in likelihood-based analytic approaches. These
adjusted likelihood-based approaches provide unbiased intervention effects under a CDM missing outcome
mechanism when the model is correctly specified and the effect measure is collapsible (e.g. for identity and log
links).25 Whilst an adjusted CRA-GEE analysis will provide an unbiased estimate of an adjusted population-
averaged intervention effect under a CDM mechanism,24 as mentioned earlier, it is not guaranteed to provide an
unbiased estimate of an unadjusted population-averaged intervention effect with a logit link due to non-
collapsibility.35

2.3 Multilevel multiple imputation GEE analysis of CRT data

The extensive literature on a range of MI procedures to account for missing outcomes in CRTs16–24 and in other
correlated data settings25,27–29 indicate the importance of the imputation procedure reflecting the hierarchical
outcome data structure. As such, we only consider imputation approaches that account for the clustering in
outcomes in CRTs. Moreover, we adhere to the principle that the imputation model needs to be compatible
with the analysis model in order to implement Rubin’s rules to combine results from multiple imputed data
sets.37 Although some authors have considered fixed effects and within-cluster imputation to account for the
hierarchical structure, in order to obtain good confidence coverage and nominal Type I error, a multilevel MI
(MMI) procedure such as random effects MI is recommended and is the one we consider here. Given that the focus
of the current article is weighted GEE, we refer the reader to Section 3.2 of Hossain et al.24 for a more
comprehensive description of MMI-GEE for the analysis of CRTs with missing binary outcomes. In brief,
MMI-GEE can be considered as a three-stage approach: (1) generate K complete data sets by imputing missing
outcomes using a multi-level imputation model (MMI step); (2) estimate an intervention effect (equation (1)) for
each of the K complete data sets using GEE (according to equation (2)); and (3) appropriately combine the K
estimated intervention effects using Rubin’s rules to account for variability introduced by the imputation.38 More
specifically, MMI for binary outcomes in CRTs can be implemented by using a random-effects logistic regression
model to generate outcome probabilities for each individual, from which a Bernoulli draw is implemented to
impute a binary outcome in the imputation stage, i.e. stage (1). Importantly, as highlighted by Hossain et al.24 the
analysis model and the imputation model do not have to be the same but do need to be correctly specified so that,
for example, interactions are specified in the models if that reflects the true functional form.

2.4 Weighted GEE analysis of CRT data with missing outcomes

Like MMI-GEE, weighted GEE for the analysis of CRT data with missing outcomes is a multi-stage approach. In
contrast to MMI-GEE, which analyzes data from all individuals, weighted GEE analyzes only those with observed
outcomes and provides greater weight to individuals with observed outcomes who have a low probability of being
observed. Weighted GEE can be considered as a two-stage approach that involves an adaptation of (equation (2))
in the second stage. Before describing the two stages in detail, we make three simplifying assumptions which,
to our knowledge, have been assumed in the previous MI literature for analyzing CRT data with
missing outcomes16–24: (1) each cluster includes at least one observed outcome, i.e., no empty clusters; (2) the
probability of missing an outcome does not depend on another participant’s observed outcome (i.e., like the MMI-
GEE literature, we only consider CDM); and (3) all baseline covariates are observed (i.e., there is no missing
covariate data). In practice, if some baseline covariates are missing, MI could be used for these. Alternatively, if
the missing covariates can reasonably be assumed to be MCAR, outcome data from those individuals can be
excluded without introducing bias (although, it is important to note that MI of these covariates may be able to
increase precision).39

In its first stage, and under our three assumptions, weighted GEE builds a propensity-score (PS) model for the
probability that an individual’s outcome is observed at the follow-up time-point, where we note that it could
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alternatively be framed as a probability of missingness (POM) model. The PS model is typically specified as a
logistic regression model such as the following

hð�ijÞ ¼ h P Rij ¼ 1jXij,Ai

� �� �
¼ �0 þ aTXXij þ �AAi ð4AÞ

where Rij¼ 1 indicates that the outcome of the jth individual in the ith cluster is observed, 0 that it is missing, and
where Xij is a vector of baseline covariates that are expected to be predictive of whether the outcome is observed
and h is the logit function. Importantly, and as for MI, interactions must be included in the model if they are
related to the probability of being observed, for example by adding terms aTAXXijAi to model (4A).19,24,40 More
generally, a key assumption is that the correct functional form is used in the PS model. A weight for each
individual, commonly referred to as an inverse probability weight (IPW), is then calculated as Wij ¼ Rij=�̂ij
where �̂ij can be estimated using the PS model (4A). We consider two versions of the PS model, namely (4A)
and (4B), where the latter accounts for potential clustering of the probability of being observed by including a
random intercept, ui for cluster i within in the following random effects logistic regression model

hð�ijÞ ¼ h P Rij ¼ 1jXij,Ai

� �� �
¼ �0 þ cTXXij þ �AAi þ ui ð4BÞ

where, again, the correct functional form should be used.
In the second stage, the intervention effect is estimated by adapting the unweighted GEE (equation (2)), to

include the individual-level weights in a weighted GEE12,41

0 ¼
XM

i¼1

DT
i V
�1
i Wi Yi � li

� �
ð5Þ

where Wi a matrix with Wij on the diagonal and zeroes on the off-diagonal. The weights could be those from a
model such as (4A) or (4B). To distinguish between the two types of weighted GEE, we use W-GEE to refer to
weights obtained from a model like (4A) with no clustering accounted for and use CW-GEE (clustered W-GEE) to
refer to weights obtained from a model like (4B), which does account for clustering in generating the weights.
Using weights in equation (5) aims to give more importance to individuals with low probability of having an
observed outcome (i.e. for individuals with large weights). One of the major assumptions of IPW is that the
probability of being observed is bounded away from zero for every individual (i.e. there are no infinite
weights). Nevertheless, instability can be caused by large weights and more advanced stabilized weighting
approaches can be used to address this issue.42 The precision of the parameter estimates of the GEE marginal
mean model can again be obtained through the sandwich variance estimator (equation (3)),36 with an adaptation
to account for Wi. It has been demonstrated that, for some simple longitudinal settings, MMI-GEE and W-GEE
are equivalent and this equivalence, therefore, should apply for simple settings of CRT data, such as the CDM
missing data mechanism assumed here.43

3 Analysis of motivating data set

In order to provide an understanding of different GEE approaches to analyzing binary outcomes in CRTs in the
presence of missing outcomes with complete baseline covariates, we first analyzed the motivating HALI data set
using the following five approaches: CRA-GEE, A-CRA-GEE, W-GEE, CW-GEE and MMI-GEE. We then
performed an extensive simulation study to evaluate the performance of all methods in settings with known data
generation mechanisms (see Section 4). Here we describe applications to the motivating data example.

3.1 Data analysis

In this example, we focus on a single binary outcome, ‘‘high literacy’’ at 9-month follow-up and do not consider
outcome data at 24-month follow-up. That variable (spelling score >10) is a dichotomized version of the primary
outcome variable, spelling score, which ranges from 0 to 20 and which was also measured at baseline. In order to
be able to show results from all five analyses without having to deal with missing baseline covariates, we sub-select
data of the 2465 (97% of 2539) children who have no missing baseline covariates. Baseline cluster size distributions
and baseline characteristics of these 2465 children are summarized by arm (Table 1, A). We restrict our
attention to five baseline child-level covariates expected to be predictive of nine-month literacy outcome

1342 Statistical Methods in Medical Research 29(5)



levels: gender, age, household head education, household socioeconomic status and baseline literacy (i.e. spelling
score on the scale 0–20).

All models used a logit link and were unadjusted (i.e. included only an intercept and treatment arm in order to
obtain a marginal intervention effect like equation (1)) except for A-CRA-GEE which also included the five
baseline covariates as additive terms in the logistic model and therefore estimated an effect conditional on the
covariate values. All analyses were conducted in R (version 3.5.0). For each of the five GEE analysis methods, we
fitted both an exchangeable and independent working correlation structure using the geeM package (version
0.10.1)44 and reported robust standard errors (SEs). Inference for the intervention effect was based on standard
Wald Z-based confidence interval for each modeling approach, except for MMI-GEE for which t-based confidence
intervals were used with appropriate degrees of freedom (see Hossain et al.,24 p. 7, which is due to Barnard and
Rubin45).

For MMI-GEE, like Hosssin et al.,24 we used the jomo package (version 2.6-7),46 specifically the jomo1rancat
form of the procedure (based on personal communication with the authors). We generated 15 imputed data sets
where the random effects logistic regression imputation model included the five baseline covariates as additive
terms. As noted in Hossain et al. (Section 5.224), the jomo package uses the probit link to perform the individual-
level imputation which provides similar results to those from a logit link when the probabilities of missing
outcomes are not too extreme. We used 100 burn-in iterations and a thinning rate of 25 because trace-plots of
the Monte Carlo Markov Chain generated by the jomo1rancat procedure showed that the chain quickly stabilized

Table 1. Analysis of HALI motivating data set.

A: Baseline and outcome characteristics of motivating HALI data set for n¼ 2465 participants with complete baseline covariates

Intervention (n¼ 1230) Control (n¼ 1235)

Baseline cluster characteristics

Number 51 50

Cluster size at baseline – mean (SD) 24.1 (3.3) 24.7 (1.9)

Baseline child-level characteristics – % (n)a

Female 47.9% (589) 49.5% (611)

Age – mean (SD) 7.7 (1.7) 7.9 (1.7)

Household head education

Did not complete primary education 29.1% (358) 34.4% (425)

Primary 55.6% (684) 52.7% (651)

Secondary 11.5% (141) 10.6% (131)

College/degree 3.8% (47) 2.3% (28)

Household socioeconomic status (SES)b

Poorest 19.0% (234) 26.3% (325)

Poor 19.9% (245) 21.1% (261)

Median poor 21.1% (259) 17.7% (219)

Less poor 19.9% (245) 18.4% (227)

Least poor 20.1% (247) 16.4% (203)

Baseline literacy – spelling score (0–20) – mean (SD) 8.4 (4.6) 7.8 (4.3)

Outcome at nine-month follow-up

High literacy (spelling score >10) 52.4% (644) 39.5% (488)

Missing outcome 12.4% (152) 11.6% (143)

B: Estimated intervention effects under five different GEE approaches (with robust SE and exchangeable working correlation matrix)

OR (95% CI)

Complete records analysis (CRA)-GEE 1.82 (1.26, 2.65)

Adjusted-complete records analysis (A-CRA)-GEE 1.93 (1.38, 2.71)

Weighted (W)-GEE 1.80 (1.23, 2.62)

Clustered weighted (CW)-GEE 1.83 (1.26, 2.65)

Multilevel multiple imputation (MMI)-GEE 1.81 (1.25, 2.63)

aUnless otherwise stated.
bObtained by principal components analysis of baseline household assets.
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(converged) and had minimal auto-correlation, showing good mixing (see Figure S1). Although these diagnostics
indicated that the selected burn-in and thinning rate were acceptable for analysis of the HALI data set (as did
those for all combinations of parameter values used in the simulation study described below), we note that a larger
burn-in or thinning rate may be needed in other applications.

3.2 Results

Children in the data set averaged 7.8 years of age and mostly resided in households where the household head had
primary education or less (Table 1, A). Intervention and control arms were broadly comparable in terms of baseline
characteristics, with the control arm children on average from households with lower SES. Overall, 295 (12%) out of
2465 children were missing the high literacy outcome, with comparable proportions missing for intervention (12.4%)
and control (11.6%). Using CRA-GEE (equation (2)) with exchangeable working correlation and robust SE, the
intervention was estimated to be effective at improving literacy with an odds ratio for high literacy of 1.82 (95% CI:
1.26, 2.65) for intervention vs. control (Table 1, B). Results from W-GEE, CW-GEE and MMI-GEE all yielded
comparable results to each other (Table 1, B) which is to be expected as all predictors of missing outcomes were
included in all approaches using the same additive form, e.g. for W-GEE the estimated intervention effect was
slightly reduced (1.80, 95% CI: 1.24, 2.62) compared to CRA-GEE (where we note that for both the W-GEE and
CW-GEE approaches, no extreme weights were estimated with all being smaller than 1000). In contrast, the A-CRA-
GEE provided a slightly higher estimated intervention effect of 1.94 (95% CI: 1.38, 2.71) because it no longer
estimates the unadjusted marginal intervention effect. Overall, results estimated using an independent working
correlation matrix were comparable to those with exchangeable (Table S1).

In summary, in the analysis of this single data set with a reasonably high degree of outcome clustering (with an
ICC on the logistic scale of 0.25, which was estimated from a generalized linear mixed model,47 in the same way as
for the simulation study below), there are minimal differences between estimated intervention effects from the
commonly used MMI-GEE analysis and the W-GEE approaches and, in this specific example under an
assumption of a CDM missing data pattern, there was no evidence that a complete records analysis was
biased. This can be partly explained by examining the relationship between the five child-level baseline
covariates and the outcome as well as their relationship with the probability of missing outcomes, as well as
the relationship of treatment arm to the probability of missingness. First, three were predictive of the outcome:
age, baseline literacy score and household head education (Table S1). Of these, only the latter was predictive of
missing outcomes. Based on data summaries for children with non-missing outcomes (i.e. with high literacy
observed), the proportion attaining high literacy at nine months was higher in intervention than control (52.4%
vs. 39.5%, Table 1, A). Importantly, when we tested for interactions between intervention arm and each of the
baseline covariates in the model of predictors of missing outcome, none of those interactions were significant.
Relatedly, whilst intervention arm was predictive of the outcome (at least for the complete-records data), it did not
appear to be predictive of the probability of missing (Table S2). As a consequence, it is to be expected that any
analysis that assumes a CDMmissing data mechanism would not show much difference to the CRA-GEE analysis
whereas we would have expected differences in analysis approaches had intervention arm also been predictive of
the outcome. However, there are situations where a CRA-GEE will provide different results to alternative methods
and it is important to understand when such differences may arise.

4 Simulation study

To better understand the results of the HALI data analysis, and, more importantly, to assess the comparative
performance of the five approaches (namely CRA-GEE, A-CRA-GEE, MMI-GEE, W-GEE and CW-GEE) in
general settings, we conducted a simulation study. As in the real data analysis, we again focus on CRTs with
missing binary outcomes in the presence of complete baseline covariates. The assumed missing data mechanism
was CDM conditional on intervention arm and a single individual-level baseline covariate under two types of
clustering of missingness, namely no clustering of missingness and under a range of levels of clustering of
missingness.

We used a 3� 4� 3(¼36) factorial simulation study design in which the outcome ICC (3 levels), missingness
ICC (4 levels) and number of clusters (3 levels) were varied. We broadly followed the simulation framework
adopted by Hossain et al.24 and fixed other parameters at comparable levels. We considered additive outcome
and missing data models (on the logit scale) and assumed M¼ 2k clusters were randomly and evenly assigned to
two arms in a parallel-arm CRT design (k¼ 10, 25, 50). Specifically, the outcome model assumed a constant
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additive intervention effect under a logistic model with a constant baseline covariate effect (i.e. no heterogeneity of
intervention effect, equivalently no interaction between intervention and covariate) and the missing outcome
model (defined by a POM) assumed an additive intervention effect under a logistic model with a constant
baseline covariate effect (i.e. no interaction between intervention and covariate) so that the overall probability
of missingness was approximately 30% (as such, the coefficients were varied slightly under different scenarios in
order to achieve this level). The cluster size was sampled from a Poisson distribution with mean of 50. We selected
a total of 1000 simulated data sets for each of the 36 scenarios so that acceptable coverage of the 95% confidence
intervals would range from 93.6% to 96.4% based on the sampling distribution of a sample proportion centered at
the target value of 95% (i.e. 0:95� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95� 0:05=1000
p

).

4.1 Data generation

There were three stages in the data generation process for each of the 1000 data sets under a fixed set of
parameters. First, a continuous baseline covariate value was simulated for each individual in the data set
according to the following model

Xij � N 0, �2X
� �

,

where �2X was fixed at 0.2. In the second stage, we simulated an outcome probability,
�ij ¼ EðYijjAi,Xij)¼PðYij ¼ 1jAi,Xij), for each individual in the data set according to the following random
effects logistic regression model that is additive on the logistic scale

logit P Yij ¼ 1jAi,Xij

� �� �
¼ 	0 þ 	AAi þ 	XXij þ 
i ð6Þ

where we fixed 	0 ¼ 	X ¼ 1 and 	A ¼ 1:36 (corresponding to an intervention effect of a conditional odds ratio of
3.9) and where 
i � N 0, �2


� �
: We varied �2
 in order to model different outcome ICC values �O, defined as

�2
 = �
2

 þ �

2=3
� �

where � � 3:142 is the exponential constant term.47 Using the simulated P Yij ¼ 1jAi,Xij

� �
for

each individual we then generated a Bernoulli random variable (Yij) in order to obtain the simulated outcome
for each individual. We note that the treatment effect 	A carries a conditional interpretation. Because we are
interested in marginal effects through analysis with a GEE outcome model, we obtain the ‘‘true’’ marginal
treatment effect under a given set of fixed parameter values by fitting the (unadjusted) GEE outcome model
separately with exchangeable and independent working correlation matrices to the 1000 full data sets (i.e.
without missing outcomes). We then separately averaged across those 1000 estimated intervention effects for
those under exchangeability and those under independence, and treat each as the truth. This process is similar
to that adopted by Hossain et al.24 except that those authors fitted the adjusted GEE with both the intervention
arm and covariate effect in the model i.e. equation (1) with Xij in the model. Because our target estimand is the
marginal effect, we selected to generate the ‘‘true’’ value under the fully marginal model (equation (1)) and refer to
this as ��A. This process can be thought of as a strategy to integrate out the single covariate that was used to
generate the outcomes in the covariate-adjusted conditional model (equation (6)).

In the third stage, we generated a missing outcome probability for each individual in each data set under an
additive logistic model, both with and without clustering of missingness, from which we simulated the binary
missingness indicator. Specifically, the two forms were

logit P Rij ¼ 0jAi,Xij

� �� �
¼ �M0 þ �

M
A Ai þ �

M
X Xij ð7AÞ

logit P Rij ¼ 0jAi,Xij, ui
� �� �

¼ �M0 þ �
M
A Ai þ �

M
X Xij þ ui ð7BÞ

where ui � N 0, �2u
� �

and where we varied �2u to model different missingness ICCs with �M¼�
2
u= �

2
u þ �

2=3
� �

: (We note
too that POM (7A) and (7B) are equivalent to propensity score models (4A) and (4B) that model P Rij ¼ 1

� �
rather

than P Rij ¼ 0
� �

). Specifically, in order to model a setting with no clustering and three cases of clustering of
missingness, we fixed �M at the following four values: 0, 0.1, 0.3 and 0.5 (corresponding to values of �2u of 0 and
approximately 0.366, 1.410 and 3.291, respectively). We fixed �MA ¼ �

M
X ¼ �

M
A ¼ �

M
X ¼ 1 and varied �M0 or �M0 so that

the overall missingness proportion across both arms was approximately 30%, with values of approximately 40% and
20% in intervention and control arms, respectively. In summary, we used a 3� 4� 3 (¼36) factorial simulation study
design that assumed the following parameters: outcome ICC values of 0.01, 0.05 and 0.2; missingness ICC values of
0, 0.1, 0.3, 0.5; and number of clusters per arm of 10, 25 and 50 (for a total of 20, 50 and 100 clusters in the trial).
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4.2 Data analysis

We then analyzed each of the 1000 simulated data sets with missing outcomes using the following five approaches:
CRA-GEE, A-CRA-GEE, MMI-GEE, W-GEE and CW-GEE. All procedures were the same as those used in the
analysis of the motivating data example, unless otherwise stated. In brief, all models used a logit link and were
unadjusted except for A-CRA-GEE which included the covariate Xij as an additive term in the logistic model. We
fitted both exchangeable and independence working correlation matrices. As for the HALI CRT data analysis (see
Section 3.1), inference was based on standard Wald Z-based confidence intervals except for MMI-GEE for which
t-based confidence intervals were used with appropriate degrees of freedom. Because of known finite sample bias
of the robust SE obtained from GEE analysis of CRTs with a small number of clusters (e.g. fewer than 40 in total),
we also considered three small-sample corrections that have previously shown reasonable performance in other
simulation studies. These corrections are the Mancl and DeRouen (MD),48 Kauermann and Carroll (KC)49 and
Fay and Graubard (FG)50 corrections, details of which are provided in Section 3 of the Supplementary Material.
Some GEE models did not converge and therefore we reported on the fraction of non-convergence for each
simulation scenario.

4.3 Simulation summary statistics

For each of the 36 parameter scenarios considered, we calculated the ‘‘true’’ value of the marginal intervention effect,
��A, as outlined above and reported the following five statistics across the 1000 replicates: (1) mean relative bias (i.e.
the mean deviation from ��A of the estimated marginal intervention effect relative to ��A), (2) coverage of the nominal
95% Z-based or t-based (for MMI-GEE) confidence intervals (i.e. the fraction of replicates for which the estimated
95% CI contains ��A), (3) the mean standard error (SE) of the point estimate of ��A, (4) the Monte Carlo standard
deviation (MCSD) of the intervention effect (i.e. the sample SD of the point estimates of ��A), and, (5) the fraction of
replicates for which the GEE algorithm did not converge. In order to indicate the extent of extreme weights in
W-GEE and CW-GEE, which could lead to instability, we additionally obtained the mean of the fraction of weights
above 1000, corresponding to the mean of the fraction of estimated propensity scores below 0.001.

4.4 Simulation results

The main statistics (mean relative bias, coverage and the deviation of mean SE from the MCSD) summarizing the
performance of the five GEE approaches using an exchangeable working correlation matrix and robust SE are
presented in Figures 1 to 3, respectively, where the low coverage of A-CRA-GEE is not shown (Figure 2) to better
compare the performance of the other four methods (see Figure S2 for the version also containing A-CRA-GEE).
The corresponding numerical results for all scenarios are reported in Table S3 assuming an exchangeable working
correlation matrix. Coverage for all scenarios (i.e. both ‘‘large’’ and ‘‘small’’ sample settings) under no correction
to the robust SE and under the three finite-sample corrections (KC, MD and FG) are provided in Table S4 with
the corresponding mean SEs reported in Table S5. Corresponding results under an independence working
correlation matrix are displayed in Tables S6 to S8.

4.4.1 Relative bias

W-GEE and MMI-GEE had similarly small relative bias (absolute value <1% in most cases), which was largely
insensitive to the outcome ICC and missingness ICC, as well as to the number of clusters (Figure 1 and Table S3)
under both under an exchangeable working correlation matrix and independent working correlation matrix
(Table S6). In contrast, CW-GEE showed increasing bias as the missingness ICC, �M, increased at each fixed
level of outcome ICC, �O, and fixed number of clusters, k attaining absolute values >1% for some settings with
�M ¼ 0:3 and 0:5. The poorest performance was observed in the small sample k¼ 10 scenario, for which absolute
relative bias was as high as 3–6% when the outcome ICC, �O, was largest. Relative bias of A-CRA-GEE was
approximately 3% for all scenarios. This non-trivial bias was expected because the target parameter of interest was
the marginal, and not adjusted, intervention effect. In contrast, relative bias of CRA-GEE was in the opposite
direction (i.e. negative) and appeared to depend only on the missingness ICC, �M, and not on the two other
parameters, namely �O and k. Importantly, Hossain et al.24 demonstrated that CRA-GEE can provide unbiased
estimates of intervention effects under a CDM missing data mechanism when the ‘‘true’’ marginal effect is
estimated from a GEE model that also adjusts for the covariate Xij. In contrast to an exchangeable working
correlation matrix (Table S3), slightly smaller bias was observed for W-GEE under independence (Table S6),
particularly as the missingness ICC, �M, increased. Similar, though less marked, improvements were observed for
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MMI-GEE and, to a lesser extent, for CRA-GEE. Large relative bias was observed for CW-GEE under large
�Mwhether an exchangeable (Figure 1, Table S3) or independent working correlation matrix (Table S6) was used.

4.4.2 Coverage

Performance of W-GEE, MMI-GEE and A-CRA-GEE was good for both k¼ 25 and k¼ 50 with values close to
the nominal 95% level for all methods and for all scenarios with both exchangeable (Figure 2 and Table S3) and
independent working correlation matrix (Table S6), with that under exchangeability slightly lower than under
independence. However, as noted above, bias for CRA-GEE and A-CRA-GEE was non-trivial (see Tables S3 and
Figure S1 for exchangeable working correlation matrix, and Table S4 under independence) and therefore those
methods are not ones we would wish to use in practice. Under both exchangeable and independent working
correlation matrices, coverage of CW-GEE decreased to levels outside of the range expected due to Monte
Carlo error (i.e. <0.936 or >0.964) as �M increased (e.g. �M 40:5). For the k¼ 10 scenario, reasonable
coverage was only attained for some settings under the t-based inference of MMI-GEE (e.g., �O ¼ 0:1, 0:2 but
not for �O ¼ 0:05). The low coverage under the k¼ 10 scenario for other methods using Z-based inference is
expected and can be corrected using small-sample corrections to the robust SE. Specifically, each of the KC and
MD corrections performed well, with the best coverage seen with the MD correction. In contrast, that from the
FG approach led to over-coverage (see Tables S4 and S7 for exchangeable and independent working correlation
matrix, respectively). The observations on improved coverage due to finite-sample bias-correction were generally
consistent with prior simulation evidence in CRTs without missing outcome data.51–53

Figure 1. Mean relative bias (%) of five GEE methods to handle missing outcomes in CRTs. The results are based on 1000 simulated

data sets per scenario (with 15 imputed data sets for MMI-GEE). ICC and ICCM, on the logistic scale, correspond to the logistic

outcome model ICC (�O) and the missing outcome ICCM (�M), respectively (see equations (6) and (7A) and (7B), respectively).

Robust standard errors under exchangeable working correlation matrix were used for all models. CRA-GEE: complete records GEE;

A-CRA-GEE: adjusted CRA-GEE; W-GEE: weighted GEE (no adjustment for clustering when estimating the weights); CW-GEE:

weighted GEE accounting for clustering when estimating the weights; MMI-GEE: multilevel multiple imputation GEE.
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4.4.3 Mean SE and MCSD

The performance in terms of coverage can be explained by that of mean SE and bias. Comparable deviations of
mean SE from the MCSD was observed for W-GEE, CRA-GEE and MMI-GEE for each fixed k and �O, with no
dependence on �M (Figure 3 and Tables S3 and S6). This, combined with negligible bias for W-GEE and MMI-
GEE led to good coverage of those two approaches. In contrast, although this led to reasonable coverage for
CRA-GEE, such performance is offset by the observed bias of this approach (Figure 1). The lowest and largest
mean SEs were obtained for A-CRA-GEE and CW-GEE, respectively, in all scenarios with mean SE for CW-GEE
further deviating from the corresponding MCSD as �Mincreases, so that the corresponding coverage of the
CW-GEE procedure decreased. The low SE of A-CRA-GEE, when combined with negative bias in the point
estimate, led to under-coverage of the nominal 95% CI at <90% in all cases, with lower coverage resulting from
higher outcome ICC, �O. MCSD was comparable to mean SE in most cases confirming that the simulation
procedure provides us with good evidence as to the properties of the estimator of interest. An exception was
for A-CRA-GEE, for which the MCSD was consistently larger than the mean SE, possibly because the coefficient
of an additional term (i.e. covariate X) is estimated in this model.

Figure 2. Coverage (%) of five GEE methods to handle missing outcomes in CRTs. The results are based on 1000 simulated data sets

per scenario using standard Wald Z-based confidence intervals for each modeling approach, except for MMI-GEE for which t-based

confidence intervals are used based on 15 imputations (see Section 4.2 for details, including the t-distribution degrees of freedom).

Acceptable coverage ranges from 93.6% to 96.4%. ICC and ICCM, on the logistic scale, correspond to the logistic outcome model ICC

(�O) and the missing outcome ICCM (�M), respectively – see equations (6) and (7A) and (7B), respectively. Due to low coverage,

results from A-CRA-GEE are not presented here. Instead, refer to Figure S2. Robust standard errors under exchangeable working

correlation matrix were used for all models. CRA-GEE: complete records GEE; A-CRA-GEE: adjusted CRA-GEE; W-GEE: weighted

GEE (no adjustment for clustering when estimating the weights); CW-GEE: weighted GEE accounting for clustering when estimating

the weights; MMI-GEE: multilevel multiple imputation GEE.
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4.4.4 W-GEE compared to CW-GEE

W-GEE outperformed CW-GEE under CDM missing outcome mechanisms that involved clustering (i.e. for
�M 4 0) in terms of both bias (it was smaller) and better coverage (mean SE was smaller). This was observed
for both exchangeable (Figures 1 and 2, Table S3) and independent (Table S6) working correlation matrix.
The estimated average proportion of the 1000 replicates with extreme weights (i.e. exceeding 1000) under
both approaches (results not shown) was zero for k¼ 25 and k¼ 50 and less than 0.1% for the small sample
case (k¼ 10).

4.4.5 Summary

As shown by our simulation study, W-GEE performs better than CW-GEE, even in the presence of clustering of
missingness. Moreover, like t-based inference for MMI-GEE, Z-based inference of W-GEE (with finite-sample
bias correction to the robust SE for k¼ 10) attains good coverage and therefore presents a good alternative
approach to MMI-GEE to handle missing outcomes in CRTs.

Figure 3. Deviations of mean SE from MCSD (%) of five GEE methods to handle missing outcomes in CRTs. The results are based on

1000 simulated data sets per scenario (with 15 imputed data sets for MMI-GEE) using robust SE with no small-sample correction (see

Table S4 for a range of results from small-sample corrections, which is particularly relevant to the setting k=10). ICC and ICCM, on the

logistic scale, correspond to the logistic outcome model ICC (�O) and the missing outcome ICCM (�M), respectively (see equations (6)

and (7A) and (7B), respectively). Due to large deviations results from A-CRA-GEE are not presented here. Instead refer to Table S3.

Robust standard errors under exchangeable working correlation matrix were used for all models. CRA-GEE: complete records GEE;

A-CRA-GEE: adjusted CRA-GEE; W-GEE: weighted GEE (no adjustment for clustering when estimating the weights); CW-GEE:

weighted GEE accounting for clustering when estimating the weights; MMI-GEE: multilevel multiple imputation GEE.
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5 Discussion

In this article, we have examined the performance of two weighted-GEE approaches (W-GEE and CW-GEE) to
account for informative missing outcome data in cohort CRTs with a single follow-up time point. Importantly, we
assumed that the missing outcome data process was dependent on fully observed baseline covariates, was across a
range of degrees of clustering of the missing outcomes (from no clustering to extreme clustering of missingness),
and that the clustering in the missingness model was independent of the clustering in the outcome model. We
demonstrated that clustering should not be accounted for when estimating the weights in this setting, even when
there is clustering in the missingness mechanism. This finding corroborates that of Skinner and D’Arrigo,31 who
considered weighted analyses of survey data for settings with clustering in the missingness process. (See Section 5.1
of the Supplementary Material for a brief summary of other references that consider weighted analyses of clustered
outcome data in different contexts.) In their first set of simulations, Skinner and D’Arrigo31 assumed that the
random effects that drive the missingness mechanism (e.g., see our Model (7B)) are independent of those that drive
the outcome mechanism (e.g., see our Model (6)), and found that the weights estimated without clustering
provided less biased point estimates. In this scenario, where the random intercepts in the missingness model do
not ‘‘confound’’ the treatment-outcome relationship, there may be ‘‘over-adjustment’’ for the cluster-level effect.
Such over-adjustment may distort covariate balance between the weighted complete data (i.e. that with non-
missing outcome data) and the unweighted full data, leading to bias in the intervention effect. Indeed, we
observed similar findings as those of Skinner and D’Arrigo31 in the survey setting with clustered outcomes
(Section 5.2 of the Supplementary Material). Specifically, we observed that the weights estimated with
clustering (equation (7B)) often led to worse covariate balance than the weights estimated without clustering
(equation (7A)) in a CRT setting with clustered missing outcomes.

In other findings, our simulations also showed that the performance of W-GEE is comparable to the more
commonly used MMI-GEE approach. Given that W-GEE can be computationally faster than MMI-GEE,
W-GEE offers a good alternative to MMI-GEE. On the other hand, both CRA-GEE and A-CRA-GEE
provided biased estimates for the marginal treatment effect estimate, whereas results due to Hossain et al.,24

showed that A-CRA-GEE provides unbiased estimates for a marginal effect that was adjusted for the baseline
covariate of interest. More specifically, the covariate-adjusted GEE estimates a conditional odds ratio that is
different from the marginal odds ratio of interest, and hence is biased for the marginal odds ratio. Although a
marginal odds ratio from the covariate-adjusted GEE model could be obtained by standardisation,54 accounting
for clustering when estimating its variance and confidence intervals involves more complicated approaches than
those implemented in standard software, and therefore we have not examined its performance in our simulations.
In contrast, the weighted GEE approach adjusted for covariates through the propensity score model naturally
preserves the marginal estimand. In fact, propensity score weighting has also been recommended as a valid
covariate-adjustment strategy in individually randomized trials in order to increase precision, whilst preserving
the marginal estimand as the target of inference.55

Although extensive in nature, our simulation study has limitations. Three limitations of note include: (1) the
nature of inference (t-based vs. Z-based), (2) the range of outcome ICC (�O) values considered, and, (3)
the assumed missing data mechanism. First, regarding statistical inference, that for MMI-GEE was based on
the t-distribution using theory developed in the missing data literature, whereas inference for W-GEE was
Z-based. As such, in the small-sample case (i.e. for k¼ 10), although MMI-GEE mostly had reasonable
coverage using the robust SE, Z-based inference for W-GEE was only acceptable when small sample
corrections were applied to the robust SE. Second, regarding the assumed outcome ICC values (�O) of 0.05, 0.1
and 0.2, some CRTs have smaller ICC values and therefore we explored this setting through additional simulations
at an ICC of 0.01 with k¼ 25. These results indicated over-coverage of MMI-GEE (i.e. exceeding 96.4%) for all
values of the missingness clustering (�M). In contrast, performance of W-GEE was good in terms of bias and
coverage except for the case of no clustering in the missingness (�M¼0) for which there was undercoverage (Section
5.3 of the Supplementary Material). Third, related to the missing data mechanism, we assumed differential
missingness between arms that arose due to additive effects of treatment arm and the baseline binary covariate
on the logistic scale. In practice, such differential missingness may arise through a more complex model that also
includes an interaction between intervention arm and the covariate. Such a mechanism has been explored by
Hossain et al.24 with analysis by MMI-GEE under a correctly specified imputation model, for which treatment
effects were unbiased and confidence intervals attained nominal coverage (e.g. see scenarios S2 and S4 of Table 1 of
Hossain et al.24). We plan future work to explore each of the three features identified here in relation to W-GEE,
namely t-based inference, a broader range of clustering in missingness and outcome models, and more complex
covariate dependent missingness mechanisms.
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Importantly, our results confirm what has been shown elsewhere in the literature that, in order to provide unbiased
estimates of the intervention effect using W-GEE and MI-GEE, it is assumed that the PS model (equation (3)) and
imputation model are correctly specified, respectively, which is unlikely to be true in practice. For W-GEE, there are
extensions to doubly robust approaches which can provide unbiased estimates even if the PS model is not correctly
specified.56 While such methods imply that the performance of W-GEE can be superior to MI-GEE, there is limited
literature available that makes such methods available to the practitioner. Currently, an implementation of doubly
robust W-GEE for missing outcomes in CRT is only available in R.41,57 An additional benefit of that implementation
is that it can increase the efficiency of W-GEE through an additional outcome regression model.58 Doubly robustness
could also be achieved for MI-GEE but theoretical and practical work is still to come.59

Although our results have shown that W-GEE can provide comparable results to MMI-GEE to address missing
outcomes in CRTs, there are five potential limitations or pitfalls of the W-GEE approach. First, the current
implementation does not account for uncertainty in the estimated weights. Second, depending on the nature of the
missing data process, the weights may be extreme in magnitude. Particularly, when weights are very large (i.e. the
probability of being observed is very small), this can lead to instability and strategies such as trimming or
truncation may need to be used.12,60 Third, in the small sample case (k <20), there may be bias in estimating
the weights for CW-GEE because they are estimated using a random effects logistic regression model which may
have poor performance in such small sample settings. Fourth, in contrast to MMI-GEE, weighted GEE does not
naturally extend to account for multivariate missingness such as a situation where there are missing baseline
covariates as well as missing outcomes. Fifth, when in the context of more general correlated data settings such
as CRTs with longitudinal outcomes rather than the single follow-up time point considered in the current paper,
weighted GEE does not easily extend to non-monotone patterns (e.g. those in longitudinal data where missingness
is intermittent and participants may have outcomes measured at later times than ones that are missing). Recent
work by Sun and Tchetgen Tchetgen has addressed such settings.61

In summary, in this article we have shown that using W-GEE to account for missing outcomes in CRT
data is relatively easy to implement and that it performs similarly to MI-GEE. Although we explored only a single
outcome, theory suggests that W-GEE should be preferred over MI-GEE when multiple outcomes are jointly
missing.27 This could arise when there are multiple follow-up time points with loss to follow up or where a
multivariate outcome is of interest at a single time point. In this case, W-GEE may be preferred as it is often easier
to specify a PS model for the probability of missing data than to model the joint distribution of all of the outcomes,
which would be required in order to implement MI-GEE. It is also possible to combine MI-GEE and W-GEE to
achieve additional efficiency in this setting.14 Overall, W-GEE shows great promise as a viable alternative to MI-GEE
to account for missing outcome data in CRTs.
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