

Discovering Linear Biosignatures for Treatment Response: A Convexity-Based Clustering Approach

Thaddeus Tarpey¹, Lanqiu Yao ¹, Eva Petkova¹ and R. Todd Ogden²

Division of Biostatistics
 Department of Population
 Health
 NYU

² Columbia University, NY, USA

1. Problem Setting:

- In a randomized clinical trial comparing treatments to placebo for mental illnesses, there often have subjects with different groups that have similar outcomes.
- A convexity-based clustering method was developed Tarpey et al to identify sets of outcomes that are only observed in treated subjects.
- This study is aimed to improve this method by considering subjects' baseline features.

2. Solution: Maximize Purity

In this study we focus on the scenario with 2 subpopulations (population 1 and population 2). The mixed effect model with consideration of linear combination of baseline features can be expressed as:

$$oldsymbol{y} = oldsymbol{X}(oldsymbol{eta} + oldsymbol{b} + oldsymbol{\Gamma}(oldsymbol{lpha'}oldsymbol{x})) + oldsymbol{\epsilon}.$$

- X is the design matrix of times
- β is the fixed effects;
- $b \sim N(0, D)$ is the vector of random effects
- • $\Gamma(\alpha'x)$) is the fixed effects of baseline features, where x is the matrix of baseline covariates and α is a linear transformation
- $\boldsymbol{\cdot} \boldsymbol{\epsilon}$ is the random error, which is independent of the random effect

Then the its coefficient distribution is:

$$z = \beta + b + \Gamma(\alpha'x))x$$

which specifies the functions' trajectories.

The Purity is defined as the optimal rule for classification in terms of minimizing the probability of misclassification. That is, the purity of point x_i with baseline features w_i is

$$p(x_i|w_i) = \frac{(\pi_1 f_1(x_i|w_i) - \pi_2 f_2(x_i|w_i))^2}{(\pi_1 f_1(x_i|w_i) + \pi_2 f_2(x_i|w_i))^2}$$

Therefore, the purity conditioning on the baseline w_i for the data is:

$$p(x|w_i) = \int \frac{(\pi_1 f_1(x_i|w_i) - \pi_2 f_2(x_i|w_i))^2}{(\pi_1 f_1(x_i|w_i) + \pi_2 f_2(x_i|w_i))^2} (\pi_1 f_1(x_i|w_i) + \pi_2 f_2(x_i|w_i)dx_i$$

$$= \int \frac{(\pi_1 f_1(x_i|w_i) + \pi_2 f_2(x_i|w_i))^2}{\pi_1 f_1(x_i|w_i) + \pi_2 f_2(x_i|w_i)} dx_i$$

- The subscripts 1 and 2 mark which population the parameters are from
- $ullet w_i = oldsymbol{lpha'} oldsymbol{x_i}$
- $oldsymbol{\cdot} f_1(x_i|w_i) \sim ext{MVN}(oldsymbol{eta_1} + oldsymbol{\Gamma_1(lpha'x_i)}), oldsymbol{b_1}); f_2(x_i|w_i) \sim ext{MVN}(oldsymbol{eta_2} + oldsymbol{\Gamma_2(lpha'x_i)}), oldsymbol{b_2})$
- π_1 , π_2 are the prior probabilities of f_1 , f_2 , which can be estimated as sample proportion.

Then the purity of the whole data can be estimated as:

$$\frac{1}{n} \sum_{w_i} \sum_{x_i} p(x_i|w_i)$$

The α that can maximize the purity actually minimizes the probability of misclassification.

3. Convexity-Based Clustering

A general convexity based clustering method is to find a partition that maximize the function through iteration:

$$\sum_{j=1}^k P(B_j)\phi(E[\boldsymbol{X}|\boldsymbol{X}\in B_j])$$

where ϕ is a convex function. The algorithm can be expressed as:

- 1. Find the α that maximizes the purity function
- 2. Initialize a partition $B_1, B_2..., B_k$ (k clusters)
- 3. Calculate the support points

$$h_j = \frac{\pi_2 P_2(Bj)}{P(B_j)}, \ P(B_j) = \pi_1 P_2(Bj) + \pi_2 P_2(Bj)$$

4. Determine a minimum support plane partition

$$D_j = \{||\lambda - h_j|| < ||\lambda - h_i||, i \neq j\},\$$

where $\lambda(x) = \frac{\pi_2 f_2(x)}{f(x)}$ is the posterior probability that an observation x belongs to population II.

- 5. Update the partition by $B_i \leftarrow \lambda^{-1}(D_i)$
- 6. Repeat 3-5 until the convergence criterion is met

4. Example

- •Data from a 6-week longitudinal depression study. Subjects randomly asigned to Fluoxetine group v.s. placebo group. The outcome the severity of depression assessed with the Hamilton Rating Scale for Depression (HRSD)
- The purity calculation: We considered two covariates: Age, Baseline CGI. The α that can achive the max purity is $\alpha = [0, 1]$
- •A Monte Carlo sample (size of 10000) was simulated to compute the probabilities $P_1(B_j)$, $P_2(B_j)$ in the clustering algorithm iteration.
- The clustering algorithm was performed without or with the baseline features combination

Table 1: Percentage of subjects classified to each cluster

	Fluox	etine, $n = 196$	Placebo, $n = 162$			
Cluster	% Respon-	% Non-	Total	% Respon-	% Non-	Total
	$\operatorname{\mathbf{ders}}$	Responders		$\operatorname{\mathbf{ders}}$	Responders	
1	29	6	35	5	0	5
2	31	14	45	24	4	28
3	4	12	16	10	31	41
4	0	4	4	0	26	26
Overall	64	36	100	39	61	100

Table 2: Percentage of subjects classified to each cluster, with consideration of baseline features

	Fluox	etine, n = 196	Placebo, $n = 162$			
Cluster % Respon-		% Non-	Total	% Respon-	% Non-	Total
	$\operatorname{\mathbf{ders}}$	Responders		$\operatorname{\mathbf{ders}}$	Responders	
1	34	6	40	7	0	7
2	29	18	47	25	8	33
3	1	9	10	6	32	38
4	0	3	3	0	22	22
Overall	64	36	100	38	62	100

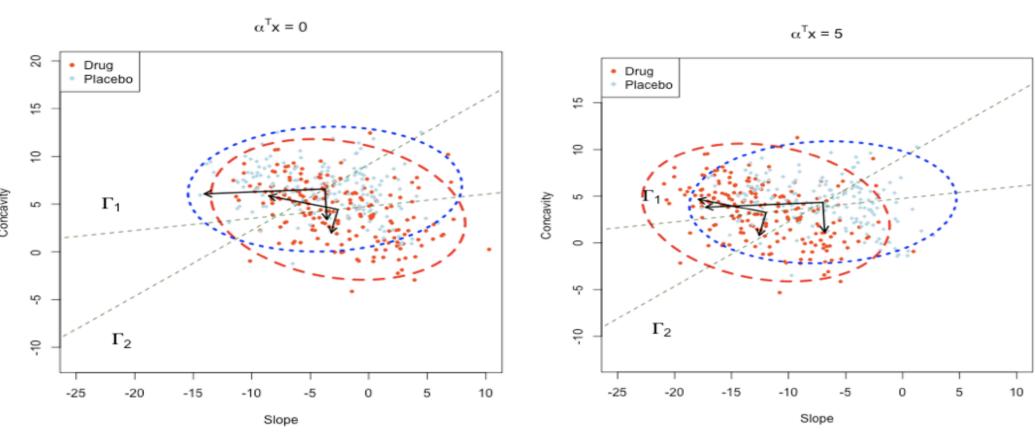
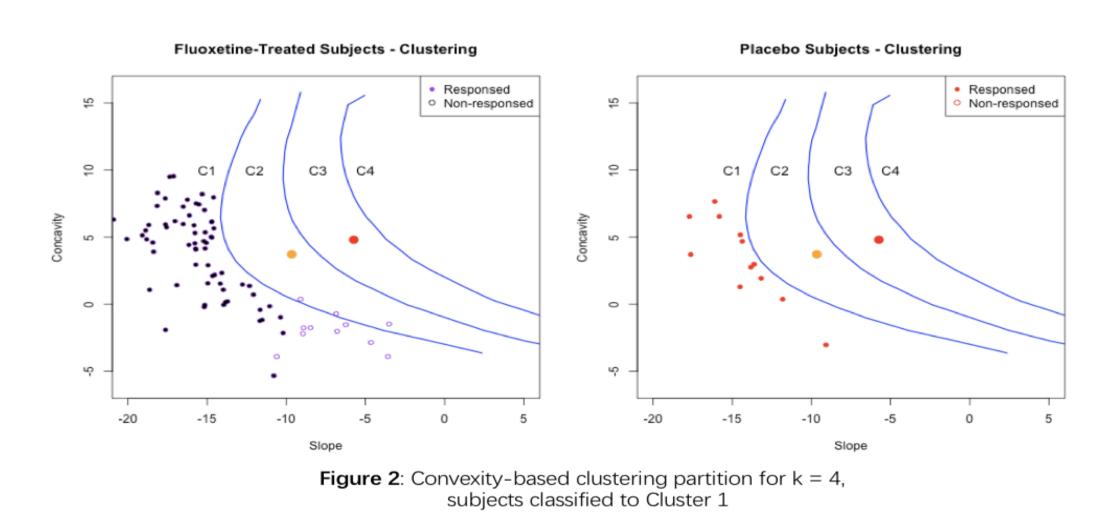


Figure 1: Contours of slope and concavity coefficients for Fluoxetine and



Conclusion

- To identify effective treatments when there is a lot of overlap outcomes from different groups of subjects is a challenge for mental health study.
- This study is based on the convexity-based clustering approach developed by Tarpey et al.
- •By considering a linear combination of baseline biosignatures may improve the approach's performance, which can be seen from the results.
- Future work: a more efficient method for higher dimension of biosignatures is needed.

References

- 1. Tarpey, Thaddeus, Eva Petkova, and Liangyu Zhu, "Stratified psychiatry via convexity-based clustering with applications towards moderator analysis.," *Statistics and its interface* **9.3(2016): 255.**
- 2. Bock, Hans-Hermann. "Convexity-based clustering criteria: theory, algorithms, and applications in statistics." *Statistical Methods and Applications* **12.3** (2004): 293-317.
- 3. Petkova, E., Tarpey, T., R. T. Ogden and Z. Su, (2014), "Generated Effect Modifiers (GEMs) in Randomized Clinical Trials," preprint.
- 4. Tarpey, T., R. Ogden, R. T. and Petkova, E., (2014), "A Paradoxical Result in Estimating Regression Coefficients," *The American Statistician*, in press.