Discovering Linear Biosignatures for Treatment Response Based on Maximizing Kullback-Leibler Divergence in Linear mixed-effect Models

Lanqiu Yao & Thaddeus Tarpey

NYU School of Medicine

Department of Population Health

Division of Biostatistics

October 25, 2019

Outline:

- 1 Introduction
- Method Kullback-Leibler Divergence Model Algorithm
- Results
 Simulation
 EMBARC
- 4 Discusson

Introduction: Background

The World Health Organization has predicted that by 2020, depression will be the second-leading cause of disease burden globally.

• 18.57 % of adults are experiencing a mental health illness, equivalent to 45 million Americans.

have serious thoughts of suicide in the U.S.

Introduction: Background

The World Health Organization has predicted that by 2020, depression will be the second-leading cause of disease burden globally.

- 18.57 % of adults are experiencing a mental health illness, equivalent to 45 million Americans.
- 4.38 % are experiencing a severe mental health illness.

have serious thoughts of suicide in the U.S.

Introduction: Background

The World Health Organization has predicted that by 2020, depression will be the second-leading cause of disease burden globally.

- 18.57 % of adults are experiencing a mental health illness, equivalent to 45 million Americans.
- 4.38 % are experiencing a severe mental health illness.
- The state prevalence of adult mental illness ranges from 16.19% in New Jersey to 25.03~% in Idaho.

have serious thoughts of suicide in the U.S.

- Challenges in mental health research
 - Diagnosis

- You feel sad or irritable most of the day, nearly every day.
- You are less interested in most activities you once enjoyed.
- You suddenly lose or gain weight or have a change in appetite.
- · You have trouble falling asleep or want to sleep more than usual.
- · You experience feelings of restlessness.
- · You feel unusually tired and have a lack of energy.
- You feel worthless or guilty, often about things that wouldn't normally make you feel that way.
- You have difficulty concentrating, thinking, or making decisions.
- You think about harming yourself or committing suicide.

To be diagnosed with major depressive disorder (MDD), you must have 5 or more of the symptoms.

- You feel sad or irritable most of the day, nearly every day.
- You are less interested in most activities you once enjoyed.
- · You suddenly lose or gain weight or have a change in appetite.
- · You have trouble falling asleep or want to sleep more than usual.
- · You experience feelings of restlessness.
- · You feel unusually tired and have a lack of energy.
- You feel worthless or guilty, often about things that wouldn't normally make you feel that way.
- You have difficulty concentrating, thinking, or making decisions.
- You think about harming yourself or committing suicide.

To be diagnosed with major depressive disorder (MDD), you must have 5 or more of the symptoms.

$$\binom{9}{5} + \binom{9}{6} + \binom{9}{7} + \binom{9}{8} + \binom{9}{9} = 247$$

NYU School of Medicine
NYU LANGONE MEDICAL CENTER

WITO EANGONE MEDICAL CENTER

- Challenge in mental health research
 - Diagnosis

- Challenge in mental health research
 - Diagnosis
 - Treatment

- Challenge in mental health research
 - Diagnosis
 - Treatment
 - Classification

The EMBARC Study

Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC)

• A multi-site, placebo-controlled randomized clinical trial

The EMBARC Study

Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC)

- A multi-site, placebo-controlled randomized clinical trial
- Participants with early onset (≤30 years) MDD are included

The EMBARC Study

Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC)

- A multi-site, placebo-controlled randomized clinical trial
- Participants with early onset (≤30 years) MDD are included
- 8-week trial

The EMBARC Study

Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC)

- A multi-site, placebo-controlled randomized clinical trial
- Participants with early onset (≤30 years) MDD are included
- 8-week trial
- Hamilton Depression Rating Scale (HDRS) is used to measure a patient's level of depression

Motivation Data: EMBARC

EMBARC Study: Quadratic Trajectories

J School of Medicine
IYU LANGONE MEDICAL CENTER

Motivation Data: EMBARC

EMBARC Study: Quadratic Trajectories

J School of Medicine
IYU LANGONE MEDICAL CENTER

Motivation Data: EMBARC

EMBARC Study: Quadratic Trajectories

J School of Medicine
IYU LANGONE MEDICAL CENTER

EMBARC

Slope vs Concavity

EMBARC

Slope vs Concavity

- link
- Separate the two distributions
- How far the two distributions are: Purity

Kullback-Leibler divergence

Recall Kullback-Leibler divergence:

In statistics, the Kullback-Leibler (KL) divergence is a measure of how one probability distribution F_1 is different from a second reference probability distribution F_2 . For distributions F_1 and F_2 of a continuous random

variable, the KL divergence is defined as:

$$D_{KL}(F_1||F_2) = \int_{-\infty}^{+\infty} f_1(x) \log(\frac{f_1(x)}{f_2(x)}) dx$$
 (1)

where f_1 and f_2 denote the probability density of F_1 and F_2 .

Kullback-Leibler divergence

KL divergence

$$D_{KL}(F_1||F_2) = \int_{-\infty}^{+\infty} f_1(x) \log(\frac{f_1(x)}{f_2(x)}) dx$$

It has properties:

The Kullback–Leibler Divergence is always non-negative:

$$D_{KL}(F_1||F_2) \ge 0, \ D_{KL}(F_2||F_1) \ge 0$$

• The KL Divergence $D_{KL}(F_1||F_2)$ can be thought of as something like a measurement of how far the distribution F_1 is from the distribution F_2 .

NYU School of Medicine
NYU LANGONE MEDICAL CENTER

In our setting, we assume the outcomes are from a linear mixed model:

$$Y = S\beta + b + \epsilon$$
,

- •
- •
- •
- •

In our setting, we assume the outcomes are from a linear mixed model:

$$Y = S(\beta + b + \Gamma(w)) + \epsilon,$$

- •
- •
- •
- •

- •

In our setting, we assume the outcomes are from a linear mixed model:

$$Y = S(\beta + b + \Gamma(w)) + \epsilon, \tag{2}$$

- $w = \alpha' x$ is the combination of the input baseline covariates.
- S is the matrix of times (intercept, linear, and quadratic term)
- β is the vector of covariates for fixed effects of S
- b is the vector of random effects
- Γ is the vector of fixed effects of the baseline covariates.
- $\alpha'x$ is the combination of the input baseline covariates.
- α has the restriction that $||\alpha|| = 1$

In our setting, we assume the outcomes are from a linear mixed model:

$$Y = S(\beta + b + \Gamma(w)) + \epsilon,$$

Define the covariate matrix of S as z. The z contains both fixed effects and random effects.

$$z = \beta + b + \Gamma w$$

That is, we have distributions for the mixed-effect model coefficients z given $w = \alpha' x$, where

$$z|w \sim N(\beta_j + \Gamma_j w, D_j),$$

for treatment j = 1, 2.

Assumptions

Based on the KL divergence, we define the purity of the data, which represents how much the differences between the treatment group distribution $f_1(x)$ and the placebo group distribution $f_2(x)$.

The assumptions:

- $f_1(z|w) \sim N(\mu_1, D_1)$, $\mu_1 = \beta_1 + \Gamma_1 w$
- $f_2(z|w) \sim N(\mu_2, D_2)$, $\mu_2 = \beta_2 + \Gamma_2 w$
- $X \sim MVN(\mu_x, \Sigma_x)$

Purity Functions

Subject Purity Function $g(\alpha'x)$ Define the **purity function** regard to a subject with baseline biosignature x (i.g. the **purity function** given α and the baseline biosignature x) as:

$$g(\alpha'x) = D_{KL}(F_1||F_2) + D_{KL}(F_2||F_1)$$

$$= \int \log(f_1(z|\alpha'x))f_1(z|\alpha'x)dz - \int \log(f_2(z|\alpha'x))f_1(z|\alpha'x)dz$$

$$+ \int \log(f_2(z|\alpha'x))f_2(z|\alpha'x)dz - \int \log(f_1(z|\alpha'x))f_2(z|\alpha'x)dz$$
(3)

where

•
$$f_1(z|w) \sim N(\mu_1, D_1), \ \mu_1 = \beta_1 + \Gamma_1 w$$

•
$$f_2(z|w) \sim N(\mu_2, D_2)$$
, $\mu_2 = \beta_2 + \Gamma_2 w$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Purity Functions

Data Purity Function purity(α) Define

- ullet f_w as the distribution of the combination of baseline signature
- $w = \alpha' x$

The purity function regards to the whole data set is defined as:

$$purity(\alpha) = \int g(\alpha'x) f_w(\alpha'x) d\alpha'x$$

$$= E(g(\alpha'x))$$
(4)

Estimate:

$$\widehat{\mathsf{purity}}(\alpha) = \overline{g}(\alpha'x) = \frac{1}{n} \sum_{i=1}^{n} g(\alpha'x_i)$$

Purity Calculation

$$g(\alpha' x) = \int f_1 \log f_1 - \int f_1 \log f_2 + \int f_2 \log f_2 - \int f_2 \log f_1$$

•
$$\int f_1 \log f_1 = -\frac{p}{2} \log(2\pi) - \frac{1}{2} \log(|D_1|) - \frac{p}{2}$$

•
$$\int f_2 \log f_2 = -\frac{p}{2} \log(2\pi) - \frac{1}{2} \log(|D_2|) - \frac{p}{2}$$

•
$$\int f_1 \log f_2 =$$

$$-\frac{p}{2} \log(2\pi) - \frac{1}{2} \log(|D_2|) - \frac{1}{2} \left(tr(D_2^{-1}D_1) + (\mu_1 - \mu_2)' D_2^{-1} (\mu_1 - \mu_2) \right)$$

•
$$\int f_2 \log f_1 = -\frac{p}{2} \log(2\pi) - \frac{1}{2} \log(|D_1|) - \frac{1}{2} \left(tr(D_1^{-1}D_2) + (\mu_1 - \mu_2)' D_1^{-1}(\mu_1 - \mu_2) \right)$$
(NYU School of Medicin

NYU LANGONE MEDICAL CENTI

Purity Calculation

The dataset's purity, which is the expectation of the g() function is:

purity(
$$\alpha$$
) = $E(g(\alpha'x))$
= $A_0 + \frac{A_1}{2} + A_2 \mu_x' \alpha + \frac{A_3}{2} [\alpha' \Sigma_x \alpha + \alpha' \mu_x \mu_x' \alpha]$ (5)

where

•
$$A_0 = -p + \frac{1}{2}tr(D_2^{-1}D_1) + \frac{1}{2}tr(D_1^{-1}D_2)$$

•
$$A_1 = (\beta_1 - \beta_2)'(D_1^{-1} + D_2^{-1})(\beta_1 - \beta_2)$$

•
$$A_2 = (\beta_1 - \beta_2)'(D_1^{-1} + D_2^{-1})(\Gamma_1 - \Gamma_2)$$

•
$$A_3 = (\Gamma_1 - \Gamma_2)'(D_1^{-1} + D_2^{-1})((\Gamma_1 - \Gamma_2))$$

All A_0, A_1, A_2, A_3 are scalars.

23 / 44

Purity Optimization

Data Purity

purity(
$$\alpha$$
) = $A_0 + \frac{A_1}{2} + A_2 \mu_x' \alpha + \frac{A_3}{2} [\alpha' \Sigma_x \alpha + \alpha' \mu_x \mu_x' \alpha]$

Goal:

Find the α that maximizes the purity function.

- Method to find the extreme value:
 - Derivation

$$A_0,A_1,A_2,A_3$$
 are also functions of $lpha$

Newton-Raphson

Algorithm

We could summarize the above purity calculation function as

Algorithm 1 Purity Calculation and Optimization

- 1: Select baseline covariates x, with dimension p.
- 2: Initial an α . Calculate $w = \alpha' x$
- 3: Fit the models $Y = S(\beta + b + \Gamma(w)) + \epsilon$ from data in group 1 and group 2, separately.
- 4: Estimate $\beta_1, \beta_2, \Gamma_1, \Gamma_2, D_1, D_2$
- 5: Calculate purity based on the function

$$purity(\alpha) = A_0 + \frac{A_1}{2} + A_2 \mu_x' \alpha + \frac{A_3}{2} \left[\alpha' \Sigma_x \alpha + \alpha' \mu_x \mu_x' \alpha \right]$$

6: Optimize the purity(α) function with Newton Raphson algorithm. Obtain the $\hat{\alpha}^*$ that maximizes the purity function. =0

YYU School of Medicine

NYU LANGONE MEDICAL CENTER

4□ > 4□ > 4□ > 4□ > □
9

Simulation Setting

Model

$$Y_j = S_j(\beta_j + b_j + \Gamma_j(w)) + \epsilon, \ W = \alpha' x, \ j \in \{1, 2\}$$

• Time points matrix S: week 0, 1, 2, ..., 7

$$S = \left(\begin{array}{ccc} 1 & t_0 & t_0^2 \\ 1 & t_1 & t_1^2 \\ \dots & \dots & \dots \\ 1 & t_7 & t_7^2 \end{array}\right)$$

- $\beta_1 = (0, 3, 0.9)', \beta_2 = (0, 3.1, 1)'$
- $\Gamma_1 = (0, 1, 0)'$, angle between the two Γ_1 and Γ_2 directions range between 0, 30, 60, 90, 120, 150, and 180 degrees.
- $||\Gamma_1|| = ||\Gamma_2|| = 1$

Simulation Setting

• $b_i \sim N(0, D_i)$, D_1, D_2 (randomly generated matrices):

$$D_1 = \left(\begin{array}{ccc} 1.45 & -0.11 & 0.20 \\ -0.11 & 0.17 & -0.08 \\ 0.20 & -0.08 & 0.22 \end{array} \right), \ D_2 = \left(\begin{array}{ccc} 1.02 & -0.23 & 0.15 \\ -0.23 & 0.68 & 0.25 \\ 0.15 & 0.25 & 1.36 \end{array} \right)$$

- The covariates are equally correlated (ho= 0.5) and normal: $X\sim N(0,\Sigma_X)$
- True α_0 = $(0.5, 0.5, 0.5, 0.5)_4'$ for p= 4 dimensional covariates
- True α_0 = $(0.25, 0.25, ..., 0.25)_1'6$ for p= 16 dimensional covariates
- $||\alpha|| = 1$

Simulation Setting

Table: Scenario settings

Scenario	N	p	D matrix	Initial $lpha$
1	400	4	Estiamted: \hat{D}_1, \hat{D}_2	α_0
2	400	4	True D_1,D_2	α_0
3	400	4	Estiamted: \hat{D}_1,\hat{D}_2	$\alpha_0 + N(0, 0.1)$
4	400	4	True D_1,D_2	$\alpha_0 + N(0, 0.1)$
5	2000	16	Estiamted: \hat{D}_1, \hat{D}_2	α_0
6	2000	16	True D_1,D_2	α_0
7	2000	16	Estiamted: \hat{D}_1, \hat{D}_2	$\alpha_0 + N(0, 0.1)$
8	2000	16	True D_1, D_2	$\alpha_0 + N(0, 0.1)$

of simulated data: 100

Simulation Results: Purity Estimation

Simulation results for p = 4 and p = 16 predictors, sample size n = 200 per treatment arm.

- Initial 1: true α used as initial starting point in search
- Initial 2: Random starting value for α
- Estimate: Randome effect covariance matrix estimated
- True D: True random effect covariance matrix used

Purity Histogram

Purity Distributions as angle between Γ_1 and Γ_2 varies

• p = 4 predictors, sample size n = 200 per treatment arm

30 / 44

Simulation Results

 Cosine Similarity: a measure of similarity between two (high-dimensional) vectors

Similarity =
$$\cos(\theta) = \alpha' \hat{\alpha}$$
, $\|\alpha\| = \|\hat{\alpha}\| = 1$

Simulation Results

Coverage (95 % confidence interval)

$$\mathsf{KL}_0 \in (\hat{KL} - 1.96\hat{\sigma}_{KL}, \hat{KL} + 1.96\hat{\sigma}_{KL})$$

Example: EMBARC data analysis

The EMBARC Study

Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC)

- A multi-site, placebo-controlled randomized clinical trial
- Participants with early onset (≤30 years) MDD are included
- 8-week trial
- Hamilton Depression Rating Scale (HDRS) is used to measure a patient's level of depression
- N = 160: 87 in control arm and 73 in intervention arm

Covariates (baseline biosignature)

Covariates (baseline biosignature)

Covariate name	Description
age_evaluation	Age at baseline
dur_MDE	Duration of current major depressive episode
age_MDE axis2	Age of first major depressive episode Severity of the most severy Axis II di-
	agnosis at baseline
anger_attack	Severity of anger attacks at baseline
anxious	Severity of anxiety at baseline

Covariates (baseline bio-signature)

Behavior Measures

Covariate name	Description
w0_4165	Interference Reaction Time in negative trials
w0_4167	Interference Reaction Time in non-negative trials
w0_4163	Interference Reaction Time in all trials
w0_4162	Total number of correct trials
w0_4169	Median Reaction time for correct trials
w0_1844	Number of valid recalled words in the Word Flu-
	ency task
w0_1916	Flanker Accuracy
w0_1915	Flanker Reaction Time
w0_1920	Accuracy effect

35 / 44

EMBARC: Purity with one baseline biosignature

Embarc: Purity with one baseline biosignature

EMBARC: Purity with two baseline biosignature

w0_1915: Flanker Reaction Time

Purity is calculated with $w0_1915$ and one of the other covariates.

Figure: Purity calculated with $w0_-1915$ and another covariate

EMBARC: Purity with All Baseline Variables

_C	Covariates	$lpha_j$
Α	age at baseline	-0.05
С	Ouration of current major depressive episode	0.22
А	age of first major depressive episode	0.21
S	everity Axis II diagnosis at baseline	0.18
S	Severity of anger attacks at baseline	
S	everity of anxiety at baseline	0.27
Ir	Interference Reaction Time (negative trials)	
Ir	nterference Reaction Time (non-negative trials)	-0.60
Ir	Interference Reaction Time (all trials)	
Total number of correct trials		-0.18
Median Reaction time for correct trials		0.09
#	for valid recalled words (Word Fluency task)	-0.10
Flanker Accuracy		0.22
Flanker Reaction Time		-0.43
Accuracy effect		-0.17
		NYU School

The Purity = 5.45

NYU LANGUNE MEDICAL CENTER

EMBARC: Individual Purity

EMBARC: Individual Purity Trajectory

Fit model without or with biosignatures (used the estimated α)

NYU School of Medicine
NYU LANGONE MEDICAL CENTER

EMBARC: Individual Purity

One subject:

- $\alpha' x = -2.76$
- Individual purity: 26.16

Trajectories of one individual with high purity Drug Placebo 0 50 HRSD 40 9 8

Conclusion

- EMBARC study had two arms: Placebo and Treatment
- Methodology described here finds a biosignature that separates the two treatment groups conditional on baseline covariate biosignature.
- Simulations showed that the linear combination of biosignatures can be estimated accurately
- Comparison of purity within a study and comparison of purity with different studies.

Reference

- Tarpey T, Petkova E, Zhu L. Stratified psychiatry via convexity-based clustering with applications towards moderator analysis. Statistics and its interface. 2016 Jul 1;9(3):255.
- Tarpey T, Ogden RT, Petkova E, Christensen R. A paradoxical result in estimating regression coefficients. The American Statistician. 2014 Oct 2;68(4):271-6.
- Petkova E, Tarpey T, Su Z, Ogden RT. Generated effect modifiers (GEM's) in randomized clinical trials. Biostatistics. 2016 Jul 27;18(1):105-18.
- Bock HH. Convexity-based clustering criteria: theory, algorithms, and applications in statistics. Statistical Methods and Applications. 2004 Feb 1;12(3):293-317.

Thank you!

NYU LANGONE MEDICAL CENTER