Extracting Scalar Measures from Functional Data with Missingness

Langiu Yao & Thaddeus Tarpey

NYU School of Medicine Department of Population Health

Division of Biostatistics

Aug 12, 2021

This work is supported by grant R01 MH099003

from the National Institute of Mental Health (NIMH)

- In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- ► The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

- In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- ► The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

- ► In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

- ► In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- ► The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

- ► In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- ► The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

- ► In RCTs, it is often of interest to estimate the effect of various treatments on the outcome.
- Patients outcomes are collected at different time points (Longitudinal).
- ► The longitudinal structures are often ignored. "Change Score" are usually used as the measurement.
- Functional data are often hard to compare since the outcomes are trajectories.
- In functional data analysis, we want to get a scalar value to represent the trajectory.
- In Precision medicine, how could we make a treatment decision rule (TDR) when the outcomes are curves.

Scalar Outcome from a Functional Trajectory

Figure: An Example Trajectory

Longitudinal Outcomes

- Y_i: Observed outcomes
- Trajectory: Outcome generation function

Extract a scalar

- Last observed outcome: Y₈
- Change Score: $Y_8 Y_1$ or $\frac{Y_8 Y_1}{t_9 t_1}$
- Slope of straight line

Target:

- Avoid the drawbacks
- Looking for a scalar measure: utilize the shape information and capture the features accurately.

Average Tangent Slope

Average rate of change (average derivative)

Consider the mixed-effect model:

$$\tilde{\mathbf{Y}}_i = \mathbf{G}(\mathbf{t}_i)(\mathbf{\beta} + \mathbf{b}_i) + \mathbf{\varepsilon}_i \tag{1}$$

- ▶ Observation time points: $\mathbf{t}_i = (t_{i1}, ..., t_{im_i})^\mathsf{T}$;
- ▶ Observed outcomes: $\tilde{\boldsymbol{Y}}_i = (\tilde{y}_{i1}, \tilde{y}_{i2}, ..., \tilde{y}_{im_i});$
- ▶ Design matrix $\mathbf{G}(\mathbf{t}_i) = (\mathbf{g}(t_1), ..., \mathbf{g}(t_{mi}))^\mathsf{T}$ and $\mathbf{g}(t) = (g_1(t), ..., g_p(t))^\mathsf{T}$;
- Fixed effect: $\boldsymbol{\beta}$; Random effect: $\boldsymbol{b}_i \sim N(\mathbf{0}, \boldsymbol{D})$; Random error: $\boldsymbol{\varepsilon}_i \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I})$

Average Outcome Function:

$$\mu(t) = \mathbf{g}^{\mathsf{T}}(t)\boldsymbol{\beta} \tag{2}$$

Average Tangent Slope (ATS) [Tarpey et al., 2021]:

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \frac{\mu(t_m) - \mu(t_1)}{t_m - t_1} = \frac{\mathbf{g}^{\mathsf{T}}(t_m) - \mathbf{g}^{\mathsf{T}}(t_1)}{t_m - t_1} \boldsymbol{\beta}$$
(3)

Example: Quadratic Trajectory

For example, if the outcome trajectory is quadratic in a longitudinal study, the design matrix $\mathbf{G}(\cdot)$ is constructed with the time function $\mathbf{g}(t) = (1, t, t^2)^{\mathsf{T}}$:

$$\mathbf{G}(\mathbf{t}_i) = \begin{pmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_{m_i} & t_{m_i}^2 \end{pmatrix}$$
(4)

the average outcome trajectory function:

$$\mu(t) = \beta_0 + \beta_1 t + \beta_2 t^2 \tag{5}$$

The ATS is:

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \beta_1 + \beta_2 (t_1 + t_m)$$
 (6)

The ATS estimator:

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \hat{\beta}_1 + \hat{\beta}_2(t_1 + t_m)$$
 (7)

- Result 1: Both ATS estimator and Change Score Estimator are unbiased for the trajectory information when there is no missing data.
- Result 2: The ATS Estimator has smaller variance than Change Score Estimator.
- Result 3: When there is missing data, the ATS Formula Estimator is still unbiased while the Change Score Estimator is biased.
- Result 4: When there is missing data, the variances of the ATS Formula Estimator is inflated.

- ▶ Result 1: Both ATS estimator and Change Score Estimator are unbiased for the trajectory information when there is no missing data.
- Result 2: The ATS Estimator has smaller variance than Change Score Estimator.
- Result 3: When there is missing data, the ATS Formula Estimator is still unbiased while the Change Score Estimator is biased.
- Result 4: When there is missing data, the variances of the ATS Formula Estimator is inflated.

- ▶ Result 1: Both ATS estimator and Change Score Estimator are unbiased for the trajectory information when there is no missing data.
- Result 2: The ATS Estimator has smaller variance than Change Score Estimator.
- Result 3: When there is missing data, the ATS Formula Estimator is still unbiased while the Change Score Estimator is biased.
- Result 4: When there is missing data, the variances of the ATS Formula Estimator is inflated.

- Result 1: Both ATS estimator and Change Score Estimator are unbiased for the trajectory information when there is no missing data.
- Result 2: The ATS Estimator has smaller variance than Change Score Estimator.
- Result 3: When there is missing data, the ATS Formula Estimator is still unbiased while the Change Score Estimator is biased.

- ▶ Result 1: Both ATS estimator and Change Score Estimator are unbiased for the trajectory information when there is no missing data.
- Result 2: The ATS Estimator has smaller variance than Change Score Estimator.
- Result 3: When there is missing data, the ATS Formula Estimator is still unbiased while the Change Score Estimator is biased.
- Result 4: When there is missing data, the variances of the ATS Formula Estimator is inflated.

ΔTS

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \frac{\mu(t_m) - \mu(t_1)}{t_m - t_1}$$
 (8)

WATS

$$\int_{t_1}^{t_m} w(t) \mu'(t) dt \tag{9}$$

where $\int_{t_1}^{t_m} w(t)dt = 1$

ATS

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \frac{\mu(t_m) - \mu(t_1)}{t_m - t_1}$$
 (8)

WATS

$$\int_{t_1}^{t_m} w(t) \mu'(t) dt \tag{9}$$

where $\int_{t_1}^{t_m} w(t)dt = 1$

ATS

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \frac{\mu(t_m) - \mu(t_1)}{t_m - t_1}$$
 (8)

WATS

$$\int_{t_1}^{t_m} \frac{w(t)}{\mu'(t)} dt \tag{9}$$

where $\int_{t_1}^{t_m} w(t)dt = 1$.

ATS

$$\frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu'(t) dt = \frac{\mu(t_m) - \mu(t_1)}{t_m - t_1}$$
 (8)

WATS

$$\int_{t_1}^{t_m} \frac{w(t)}{\mu'(t)} dt \tag{9}$$

where $\int_{t_1}^{t_m} w(t)dt = 1$.

Selection of Weight Function w(t)

Define
$$E_w(\mathbf{g'}) = \left(\int_{t_1}^{t_m} w(t)g_1'(t)dt, ..., \int_{t_1}^{t_m} w(t)g_p'(t)dt\right)^\mathsf{T},$$

$$\mathsf{WATS} = \int_{t_1}^{t_m} w(t)\mu'(t)dt = E_w^\mathsf{T}(\mathbf{g'})\boldsymbol{\beta} \tag{10}$$

Selection of w(t)

- Arbitrary function
- Exponential function: $w(t) = h_1 \exp(\alpha_1 t + \alpha_2 t^2)$
- ▶ Beta distribution: $w(t) = h_2 \left(\frac{t-t_1}{t_m-t_1}\right)^{\gamma_1-1} \left(\frac{t_m-t}{t_m-t_1}\right)^{\gamma_2-1}$
- Basis spline weight function: $w(t) = \boldsymbol{b}_w^{\mathsf{T}}(t)\boldsymbol{q}\boldsymbol{q}^{\mathsf{T}}\boldsymbol{b}_w(t)$

Parameters: $h_1, h_2, \alpha_1, \alpha_2, \gamma_1, \gamma_2$

 \boldsymbol{q} : coefficients for basis function $\boldsymbol{b}_w(t)$

Selection of Weight Function w(t)

Define
$$E_w(\mathbf{g}') = \left(\int_{t_1}^{t_m} w(t)g_1'(t)dt, ..., \int_{t_1}^{t_m} w(t)g_p'(t)dt\right)^\mathsf{T},$$

$$\mathsf{WATS} = \int_{t_1}^{t_m} w(t)\mu'(t)dt = E_w^\mathsf{T}(\mathbf{g}')\boldsymbol{\beta} \tag{10}$$

Selection of w(t):

- Arbitrary function
- Exponential function: $w(t) = h_1 \exp(\alpha_1 t + \alpha_2 t^2)$
- ▶ Beta distribution: $w(t) = h_2 \left(\frac{t-t_1}{t_m-t_1}\right)^{\gamma_1-1} \left(\frac{t_m-t}{t_m-t_1}\right)^{\gamma_2-1}$
- ► Basis spline weight function: $w(t) = \boldsymbol{b}_{w}^{\mathsf{T}}(t)\boldsymbol{q}\boldsymbol{q}^{\mathsf{T}}\boldsymbol{b}_{w}(t)$

Parameters: $h_1, h_2, \alpha_1, \alpha_2, \gamma_1, \gamma_2$

 \boldsymbol{q} : coefficients for basis function $\boldsymbol{b}_w(t)$

Hypothesis Test

Extend model to K groups (e.g., K = 2):

$$\tilde{\mathbf{Y}}_{i,k} = \mathbf{G}(\mathbf{t}_{i,k})(\boldsymbol{\beta}_k + \boldsymbol{b}_{i,k}) + \boldsymbol{\varepsilon}_{i,k}$$
(11)

Hypothesis:

$$\begin{aligned} \mathbf{H}_0: \ E_w^{\mathsf{T}}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &= 0\\ \mathbf{H}_1: \ E_w^{\mathsf{T}}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &\neq 0 \end{aligned} \tag{12}$$

Wald Test statistic

$$\frac{E_{w}^{\mathsf{T}}(\mathbf{g}')\left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)\left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)^{\mathsf{T}} E_{w}(\mathbf{g}') - 0}{\mathsf{Var}\left(E_{w}^{\mathsf{T}}(\mathbf{g}')\left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)\right)} \sim \mathcal{Z}^{2}(1)$$
(13)

Objective function

Hypothesis Test

Extend model to K groups (e.g., K = 2):

$$\tilde{\boldsymbol{Y}}_{i,k} = \boldsymbol{G}(\boldsymbol{t}_{i,k})(\boldsymbol{\beta}_k + \boldsymbol{b}_{i,k}) + \boldsymbol{\varepsilon}_{i,k}$$
(11)

Hypothesis:

$$\begin{aligned} \mathbf{H}_0: \ E_w^{\mathsf{T}}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &= 0\\ \mathbf{H}_1: \ E_w^{\mathsf{T}}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &\neq 0 \end{aligned} \tag{12}$$

Wald Test statistic:

$$\frac{E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right) \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)^{\mathsf{T}} E_{w}(\mathbf{g}') - 0}{\mathsf{Var} \left(E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)\right)} \sim \mathscr{Z}^{2}(1)$$
(13)

Objective function

$$\widehat{w(t)} = \underset{w(t)}{\operatorname{argmax}} \frac{E_w^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_1 - \widehat{\boldsymbol{\beta}}_2\right) \left(\widehat{\boldsymbol{\beta}}_1 - \widehat{\boldsymbol{\beta}}_2\right)^{\mathsf{T}} E_w(\mathbf{g}')}{E_w^{\mathsf{T}}(\mathbf{g}') \left(\operatorname{Cov}(\widehat{\boldsymbol{\beta}}_1) + \operatorname{Cov}(\widehat{\boldsymbol{\beta}}_1)\right) E_w(\mathbf{g}')} \\ \underbrace{\mathsf{NYU} \operatorname{School}}_{\text{NYU LANGONI}}$$

Hypothesis Test

Extend model to K groups (e.g., K = 2):

$$\tilde{\boldsymbol{Y}}_{i,k} = \boldsymbol{G}(\boldsymbol{t}_{i,k})(\boldsymbol{\beta}_k + \boldsymbol{b}_{i,k}) + \boldsymbol{\varepsilon}_{i,k}$$
(11)

Hypothesis:

$$\begin{aligned} \mathbf{H}_0: \ E_w^\mathsf{T}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &= 0\\ \mathbf{H}_1: \ E_w^\mathsf{T}(\mathbf{g}')(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) &\neq 0 \end{aligned} \tag{12}$$

Wald Test statistic:

$$\frac{E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right) \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)^{\mathsf{T}} E_{w}(\mathbf{g}') - 0}{\mathsf{Var} \left(E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)\right)} \sim \mathscr{Z}^{2}(1)$$
(13)

Objective function:

$$\widehat{w(t)} = \underset{w(t)}{\operatorname{argmax}} \frac{E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right) \left(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\right)^{\mathsf{T}} E_{w}(\mathbf{g}')}{E_{w}^{\mathsf{T}}(\mathbf{g}') \left(\operatorname{Cov}(\widehat{\boldsymbol{\beta}}_{1}) + \operatorname{Cov}(\widehat{\boldsymbol{\beta}}_{1})\right) E_{w}(\mathbf{g}')} \underbrace{\text{NYU School of Medicine}}_{\text{NYU LANGONE MEDICAL CENTER}}$$

$$\widehat{w(t)} = \underset{w(t)}{\operatorname{argmax}} \frac{E_{w}^{\mathsf{T}}(\mathbf{g}') \Big(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\Big) \Big(\widehat{\boldsymbol{\beta}}_{1} - \widehat{\boldsymbol{\beta}}_{2}\Big)^{\mathsf{T}} E_{w}(\mathbf{g}')}{E_{w}^{\mathsf{T}}(\mathbf{g}') \Big(\operatorname{Cov}(\widehat{\boldsymbol{\beta}}_{1}) + \operatorname{Cov}(\widehat{\boldsymbol{\beta}}_{1}) \Big) E_{w}(\mathbf{g}')}$$

Optimization:

- 1. Choose the basis functions g(t) (any basis functions should be able to get the same result)
- ightharpoonup 2. Fit the mixed effect model and get estimations of $\widehat{m{\beta}}_k$
- ▶ 3. Estimate the variance of $\widehat{\boldsymbol{\beta}}_k$ with $(\sum_{i=1}^n \boldsymbol{g}(t_i)^\mathsf{T} \widehat{\boldsymbol{V}}_{ki}^{-1} \boldsymbol{g}(t_i))^{-1}$, and $\widehat{\boldsymbol{V}}_{ki} = \boldsymbol{g}(t_i) \widehat{\boldsymbol{D}} \boldsymbol{g}(t_i)^\mathsf{T} + \hat{\sigma}^2 \boldsymbol{I}$, where $\widehat{\boldsymbol{D}}$ is the estimated covariance matrix.
- lacksquare 4. Solve the generalized Rayleigh Quotient and get the estimated $\widehat{E_w(oldsymbol{g}')}$
- ▶ 5. Plug the $\widehat{E_w(\mathbf{g}')}$ back in Eq(14) and get the estimated $\widehat{\text{WATS}}_k$

$$\widehat{\mathsf{WATS}}_k = \widehat{E_w(\boldsymbol{g}')}^\mathsf{T} \widehat{\boldsymbol{\beta}}_k$$

Simulation Study

Figure: Outcome Trajectories

- $t = (0, 1, ..., 7)^{\mathsf{T}}$, week 0 to week 7
- ▶ Random error $\varepsilon_1, \varepsilon_2 \sim N(0, \sigma^2), \, \sigma \in \{1, 2, ..., 10\}$
- Missingness: MCAR (30%);
- Missingness: Dropout: 50% subjects droped out at week 4.

Simulation Study

Methods Comparison:

- ATS estimator,
- ▶ WATS: exponential weight, beta weight, and weight function with basis function,
- Change Score, Slope of linear straight line, ANCOVA with adjustment of baseline outcomes.

Figure: Weight Functions

Comparison of Power and Type I Erro

Treatment Decision Rules based on ATS

Identify the treatment decision rule (TDR) with patient's baseline information (biosignatures)

- A collection of baseline covariates measures $\mathbf{x} = (x_1, ..., x_p)'$
- A function d that assigns a treatment decision to a patient based on baseline covariates $\mathbf{x} = (x_1, ..., x_n)'$

$$d: \mathbf{x} \to T$$

- A treatment decision
- T=k for treatment k

Single Index Models

Single-index: $w = \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{x}$.

Generated Effect Modifier model [Petkova et al., 2017

$$y_k = x(\gamma_k \otimes \alpha) + \varepsilon$$

•Choose α that maximizes the statistical significance of modifying or interaction effec

Single index model with multiple links model [Park et al., 2020]

$$y_k = g_k(\boldsymbol{\alpha}_k^\mathsf{T} \boldsymbol{x}) + \varepsilon_k$$

- Nonlinear link function
- Flexible methods for determining composite variables

Single Index Models

Single-index: $w = \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{x}$.

Generated Effect Modifier model [Petkova et al., 2017]

$$y_k = \mathbf{x}(\mathbf{\gamma}_k \otimes \mathbf{\alpha}) + \varepsilon_k$$

•Choose lpha that maximizes the statistical significance of modifying or interaction effect

Single index model with multiple links model [Park et al., 2020]

$$y_k = g_k(\boldsymbol{\alpha}_k^\mathsf{T} \boldsymbol{x}) + \boldsymbol{\varepsilon}_k$$

- Nonlinear link function
- Flexible methods for determining composite variables

Single Index Models

Single-index: $w = \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{x}$.

Generated Effect Modifier model [Petkova et al., 2017]

$$y_k = \mathbf{x}(\mathbf{\gamma}_k \otimes \mathbf{\alpha}) + \varepsilon_k$$

•Choose lpha that maximizes the statistical significance of modifying or interaction effect

Single index model with multiple links model [Park et al., 2020]

$$y_k = g_k(\boldsymbol{\alpha}_k^\mathsf{T} \boldsymbol{x}) + \boldsymbol{\varepsilon}_k$$

- Nonlinear link function
- Flexible methods for determining composite variables

Mixed-effect model incorporates biosignatures $(\boldsymbol{\alpha}^T \boldsymbol{x}_{ik})$:

$$\tilde{\boldsymbol{Y}}_{i,k} = \boldsymbol{G}(\boldsymbol{t}_{i,k}) \left(\boldsymbol{\beta}_k + \boldsymbol{b}_{i,k} + \boldsymbol{\Gamma}_k(\boldsymbol{\alpha}^\mathsf{T} \boldsymbol{x}_{ik}) \right) + \boldsymbol{\varepsilon}_{i,k}$$
(15)

The averaged outcome function given biosignatures:

$$\mu_k(t|\boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{x}) = \boldsymbol{g}(t)^{\mathsf{T}} (\boldsymbol{\beta}_k + \boldsymbol{\Gamma}_k(\boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{x}))$$
(16)

Conditional ATS:

$$\mathsf{ATS}_k(\boldsymbol{\alpha}^\mathsf{T}\boldsymbol{x}) = \frac{1}{t_m - t_1} \int_{t_1}^{t_m} \mu_k'(t|\boldsymbol{\alpha}^\mathsf{T}\boldsymbol{x}) dt = \frac{\boldsymbol{g}(t_m)^\mathsf{T} - \boldsymbol{g}(t_1)^\mathsf{T}}{t_m - t_1} \left(\boldsymbol{\beta}_k + \boldsymbol{\Gamma}_k(\boldsymbol{\alpha}^\mathsf{T}\boldsymbol{x}) \right) \tag{17}$$

Optimizing the TDRs: Maximize the differences of ATS among groups

$$\int \left(\mathsf{ATS}_{2}(u) - \mathsf{ATS}_{1}(u)\right)^{2} f_{u}(u) du$$

$$= b_{1} + b_{2} \boldsymbol{\mu}_{x}^{\mathsf{T}} \boldsymbol{\alpha} + b_{3} \boldsymbol{\alpha}^{\mathsf{T}} (\boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{\mathsf{T}} + \boldsymbol{\Sigma}_{x}) \boldsymbol{\alpha}$$
(18)

where

$$\begin{array}{ll} \blacktriangleright & b_1 = (\pmb{\beta}_1^\mathsf{T} - \pmb{\beta}_2^\mathsf{T}) \, \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \, \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\beta}_1 - \pmb{\beta}_2) \\ \\ \blacktriangleright & b_2 = 2(\pmb{\beta}_1^\mathsf{T} - \pmb{\beta}_2^\mathsf{T}) \, \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \, \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\Gamma}_1 - \pmb{\Gamma}_2) \\ \\ \blacktriangleright & b_3 = (\pmb{\Gamma}_1^\mathsf{T} - \pmb{\Gamma}_2^\mathsf{T}) \, \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \, \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\Gamma}_1 - \pmb{\Gamma}_2) \end{array}$$

Objective Function

$$\widehat{\boldsymbol{\alpha}} = \underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \int \left(\widehat{\mathsf{ATS}}_{2}(u) - \widehat{\mathsf{ATS}}_{1}(u)\right)^{2} f_{u}(u) du$$

$$= \underset{\boldsymbol{\alpha}}{\operatorname{argmax}} b_{1}(\boldsymbol{\alpha}) + b_{2}(\boldsymbol{\alpha}) \widehat{\boldsymbol{\mu}}_{x}^{\mathsf{T}} \boldsymbol{\alpha} + b_{3}(\boldsymbol{\alpha}) \boldsymbol{\alpha}^{\mathsf{T}} (\widehat{\boldsymbol{\mu}}_{x} \widehat{\boldsymbol{\mu}}_{x}^{\mathsf{T}} + \widehat{\boldsymbol{\Sigma}}_{x}) \boldsymbol{\alpha}$$

$$(19)$$

Optimizing the TDRs: Maximize the differences of ATS among groups

$$\int \left(\mathsf{ATS}_{2}(u) - \mathsf{ATS}_{1}(u)\right)^{2} f_{u}(u) du$$

$$= b_{1} + b_{2} \boldsymbol{\mu}_{x}^{\mathsf{T}} \boldsymbol{\alpha} + b_{3} \boldsymbol{\alpha}^{\mathsf{T}} (\boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{\mathsf{T}} + \boldsymbol{\Sigma}_{x}) \boldsymbol{\alpha}$$
(18)

where

$$\begin{aligned} & \blacktriangleright & b_1 = (\pmb{\beta}_1^\mathsf{T} - \pmb{\beta}_2^\mathsf{T}) \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\beta}_1 - \pmb{\beta}_2) \\ & \blacktriangleright & b_2 = 2(\pmb{\beta}_1^\mathsf{T} - \pmb{\beta}_2^\mathsf{T}) \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\Gamma}_1 - \pmb{\Gamma}_2) \\ & \blacktriangleright & b_3 = (\pmb{\Gamma}_1^\mathsf{T} - \pmb{\Gamma}_2^\mathsf{T}) \frac{\pmb{g}^{(t_m)} - \pmb{g}^{(t_1)}}{t_m - t_1} \frac{\pmb{g}^\mathsf{T}(t_m) - \pmb{g}^\mathsf{T}(t_1)}{t_m - t_1} (\pmb{\Gamma}_1 - \pmb{\Gamma}_2) \end{aligned}$$

Objective Function:

$$\widehat{\boldsymbol{\alpha}} = \underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \int \left(\widehat{\mathsf{ATS}}_{2}(u) - \widehat{\mathsf{ATS}}_{1}(u)\right)^{2} f_{u}(u) du$$

$$= \underset{\boldsymbol{\alpha}}{\operatorname{argmax}} b_{1}(\boldsymbol{\alpha}) + b_{2}(\boldsymbol{\alpha}) \widehat{\boldsymbol{\mu}}_{x}^{\mathsf{T}} \boldsymbol{\alpha} + b_{3}(\boldsymbol{\alpha}) \boldsymbol{\alpha}^{\mathsf{T}} (\widehat{\boldsymbol{\mu}}_{x} \widehat{\boldsymbol{\mu}}_{x}^{\mathsf{T}} + \widehat{\boldsymbol{\Sigma}}_{x}) \boldsymbol{\alpha}$$
(19)

Treatment Decision Rule:

$$d(\mathbf{x}^{\text{new}}) = I\left(\frac{\mathbf{g}(t_m)^{\mathsf{T}} - \mathbf{g}(t_1)^{\mathsf{T}}}{t_m - t_1} \left(\widehat{\boldsymbol{\beta}}_2 + \widehat{\boldsymbol{\Gamma}}_2(\widehat{\boldsymbol{\alpha}}^{\mathsf{T}} \mathbf{x}^{\text{new}})\right) > \frac{\mathbf{g}(t_m)^{\mathsf{T}} - \mathbf{g}(t_1)^{\mathsf{T}}}{t_m - t_1} \left(\widehat{\boldsymbol{\beta}}_1 + \widehat{\boldsymbol{\Gamma}}_1(\widehat{\boldsymbol{\alpha}}^{\mathsf{T}} \mathbf{x}^{\text{new}})\right)\right) + 1$$
(20)

Simulation Study

$$n = 100, t = (0, 1, ..., 7)^{T}$$

$$\boldsymbol{\beta}_1 = (0,3,-0.5)^{\mathsf{T}}, \boldsymbol{\beta}_2 = (0,2.3,-0.4)^{\mathsf{T}}$$

$$ightharpoonup \Gamma_1 = (0, \cos(\frac{\theta}{180}\pi), \sin(\frac{\theta}{180}\pi))^{\mathsf{T}}$$

$$\qquad \qquad \boldsymbol{\Gamma}_2 = (0, \cos(\frac{\theta}{180}\pi), -\sin(\frac{\theta}{180}\pi))^\mathsf{T},$$

$$\theta \in \{0, 5, 10, 20\}$$

► Random effect $\gamma_{1,i} \sim N(\mathbf{0}, \mathbf{D}_1)$, $\gamma_{2,i} \sim N(\mathbf{0}, \mathbf{D}_2)$, where

$$\mathbf{D}_1 = \mathbf{D}_2 = \begin{pmatrix} 8 & 3 & -0.4 \\ 3 & 1.5 & -0.16 \\ -0.4 & -0.16 & 0.03 \end{pmatrix}$$

Missingness: MCAR (30 %); Dropout: 50% dropout at week 2.

Figure: Outcome Trajectory

Summary

- Average tangent slope can provide a meaningful scalar summary of a functional trajectory.
- ► The weighted average tangent slope allows additional flexibility in extracting a scalar summary statistic.
- Both methods have outstanding performances than the other scalar measures and are robust to missing values (MCAR, Dropout)
- ► In precision medicine, the ATS and WATS can help the derivation of the optimal treatment decision.
- Combine baseline characteristics into a single index model and incorporate ATS, we get good estimation of proportion of correction decision, especially when there is missing data

Thank you!

Reference

- H. Park, E. Petkova, T. Tarpey, and R. T. Ogden. A single-index model with multiple-links. *Journal of statistical planning and inference*, 205: 115–128. 2020.
- E. Petkova, T. Tarpey, Z. Su, and R. T. Ogden. Generated effect modifiers (gemâs) in randomized clinical trials. *Biostatistics*, 18(1): 105–118, 2017.
- T. Tarpey, E. Petkova, A. Ciarleglio, and R. T. Ogden. Extracting scalar measures from functional data with applications to placebo response. *Statistics and Its Interface*, 14(3):255–265, 2021.

